& . ..I--""'- =
S e T

&, VTV TN e

- ,lf! - —

DESIGNING
EMBEDDED SYSTEMS

AND THE

INTERNET OF THINGS (10T)

WITH THE

ARM® MBED™

PERRY XIAO

O
e WILEY

Designing Embedded Systems and the Internet of
Things (IoT) with the ARM® Mbed™

Designing Embedded Systems and the Internet
of Things (loT) with the ARM® Mbed ™

Perry Xiao
London South Bank University
UK

WILEY

This edition first published 2018
© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of Perry Xiao to be identified as the author has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 85Q, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product
is referred to in this work as a citation and/or potential source of further information does not mean that
the publisher and authors endorse the information or services the organization, website, or product may
provide or recommendations it may make. This work is sold with the understanding that the publisher is not
engaged in rendering professional services. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a specialist where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written

and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Xiao, Perry, author.

Title: Designing embedded systems and the internet of things (IoT) with the
ARM Mbed / by Perry Xiao.

Description: First edition. | Hoboken, NJ : John Wiley & Sons, Inc., [2018] |
Includes bibliographical references and index. |

Identifiers: LCCN 2018008687 (print) | LCCN 2018015034 (ebook) | ISBN
9781119364016 (pdf) | ISBN 9781119364047 (epub) | ISBN 9781119363996
(cloth)

Subjects: LCSH: Embedded computer systems—Design and construction | Internet
of things—Equipment and supplies. | Microcontrollers.

Classification: LCC TK7895.E42 (ebook) | LCC TK7895.E42 X56 2018 (print) |
DDC 006.2/2—dc23

LC record available at https://lccn.loc.gov/2018008687

Cover design by Wiley
Cover image: © matejmo/Getty Images; © Raimundas/Shutterstock

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

This book is dedicated to my family. To my wife, May, my son, Zieger, and my daughter,
Jessica, who make my life complete—without them, life would be meaningless. To my
parents and my brother, who have shared their life and love with me that ultimately

made me what I am today. To my friends and colleagues, who supported me
throughout my career.

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4

1.5
1.6

2.1
2.2
2.3
2.4
24.1
24.2
24.3
244
2.4.5
2.4.6
2.5
2.6

Contents

About the Author xiii
Preface «xv

Author’s Acknowledgments xix
About the companion website xxi

Part] Introduction to Arm® Mbed™ and loT 1

Introduction to Arm® Mbed™ 3
What is an Embedded System?

Microcontrollers and Microprocessors

3

ARM® Processor Architecture 8

The Arm® Mbed"™ Systems 10

NXP LPC1768 11
NXP LPC11U24 14
BBC Micro:bit 15

The Arm® Mbed " Ethernet Internet

of Things (IoT) Starter Kit
Summary 21
Chapter Review Questions

17

21

4

Introduction to the Internet of Things (loT)
What is the Internet of Things (IoT)?

How Does IoT Work? 24

How Will IoT Change Our Lives?

Potential IoT Applications
Home 27

Healthcare 28
Transport 28

Energy 28
Manufacture 28
Environment 28
Summary 29

Chapter Review Questions

27

29

25

23

23

vii

viii | Contents

3 loT Enabling Technologies 31
3.1 Sensors and Actuators 31
3.2 Communications 31

3.2.1 RFID and NFC (Near-Field Communication) 32

3.22 Bluetooth Low Energy (BLE) 32

3.2.3 LiFi 33

3.24 6LowPAN 33

3.2.5 ZigBee 34

3.2.6 Z-Wave 34

3.2.7 LoRa 34

3.3 Protocols 35

3.3.1 HTTP 35

3.3.2 WebSocket 36

333 MQTT 37

3.34 CoAP 38

3.35 XMPP 38

3.4 Node-RED 39

3.5 Platforms 41

3.51 IBM Watson IoT—Bluemix (http://www.ibm.com/internet-of-things/) 41

3.5.2 Eclipse IoT (https://iot.eclipse.org/) 42

3.5.3 AWSIoT (https://aws.amazon.com/iot/) 42

3.54 Microsoft Azure IoT Suite
(https://azure.microsoft.com/en-us/suites/iot-suite/) 42

3.55 Google Cloud IoT (https://cloud.google.com/solutions/iot/) 44

3.5.6 ThingWorx (https://www.thingworx.com/) 44

3.5.7 GE Predix (https://www.predix.com/) 44

3.5.8 Xively (https://www.xively.com/) 44

3,59 macchina.io (https://macchina.io/) 45

3.5.10 Carriots (https://www.carriots.com/) 45

3.6 Summary 45

3.7 Chapter Review Questions 45

Partll Arm®Mbed™ Development 47

4 Getting Started with Arm® Mbed™ 49

4.1 Introduction 49

4.2 Hardware and Software Required 49

4.2.1 Hardware 49

4.2.2 Software 50

4.3 Your First Program: Blinky LED 53

4.3.1 Connect the Mbed to a PC 53

43.2 Click “mbed.htm” to LogIn 53

433 Add the FRDM-K64F Platform to Your Compiler 54
4.34 Import an Existing Program 54

4.3.5 Compile, Download, and Run Your Program 57

4.3.6
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.1.1
5.1.2
5.1.3
5.2
521
5.2.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74
7.5
7.6

8.1
8.2

What Next? 57

Create Your Own Program 57

C/C++ Programming Language 58
Functions and Modular Programming 58
Manage Platforms 61

Clone Your Program 63

Search and Replace 64

Compile Your Program for Multiple Platforms
Delete Your Program 65

Disaster Recovery Procedure 67
Upgrade Firmware 67

Help 67

Summary 69

Inputs and Outputs 71

Digital Inputs and Outputs 71
Digital Inputs 71

Digital Outputs 74

BusIn, BusOut, and BusInOut 79
Analog Inputs and Outputs 81
Analog Inputs 81

Analog Outputs 82

Pulse Width Modulation (PWM) 86
Accelerometer and Magnetometer 88
SD Card 96

Local File System (LPC1768) 99
Interrupts 100

Summary 101

Digital Interfaces 103
Serial 103

SPI 106

12C 108

CAN 111

Summary 113

Networking and Communications 115
Ethernet 115

Ethernet Web Client and Web Server 119
TCP Socket and UDP Socket 124
WebSocket 128

WiFi 131

Summary 135

Digital Signal Processing and Control 137
Low-Pass Filter 137
High-Pass Filter 141

65

Contents

x| Contents

8.3 Band-Pass Filter 143

8.4 Band-Stop Filter and Notch Filter 146
8.5 Fast Fourier Transform (FFT) 149

8.6 PID Controller 160

8.7 Summary 164

9 Debugging, Timer, Multithreading, and Real-Time Programming 165
9.1 Debugging 165
9.2 Timer, Timeout, Ticker, and Time 167

9.3 Network Time Protocol (NTP) 171
9.4 Multithreading and Real-Time Programming 173
9.5 Summary 179

10 Libraries and Programs 181

10.1 Import Libraries and Programs 181
10.2 Export Your Program 181

10.3 Write Your Own Library 182

10.4 Publish Your Library 188

10.5 Publish Your Program 190

10.6 Version Control 192

10.7 Collaborations 196

10.8 Update Your Library and Program 201
10.9 Summary 202

Partlll The loT Starter Kit and loT Projects 203
11 Arm® Mbed™ Ethernet loT Starter Kit 205
11.1 128x32 LCD 205

11.2 Joystick 207

11.3 Two Potentiometers 208

11.4 Speaker 209

11.5 Three-Axis Accelerometer 211

11.6 LM75B Temperature Sensor 211

11.7 RGBLED 212

11.8 Summary 214

12 IoT Projects with Arm® Mbed ™ 215

12.1 Temperature Monitoring over the Internet 215

12.2 Smart Lighting 224

12.3 Voice-Controlled Door Access 230

12.4 RFID Reader 237

12.5 Cloud Example with IBM Watson Bluemix 242

12.5.1 IBM Quickstart Service 243

12.5.2 IBM Registered Service (Bluemix) 245

12.5.3 Add IBM Watson IoT Service to Your Application 252

12.5.4 Add Your Mbed Device to Your Watson IoT Organization 252

12.5.5
12.5.6
12.5.7

12.5.8
12.6
12.7

Contents
Adding Credentials onto Your Mbed Device 257
Link Your IBM IoT Watson Application to Your Mbed Device 257
Sending Commands from Your IBM IoT Watson Application
to Your Mbed Board 261
More with Node-RED 261
Real-Time Signal Processing 271
Summary 277
PartlV Appendices 279
Appendix A: Example Codes 281
Appendix B: HiveMQ MQTT Broker 285
Appendix C: Node-RED on Raspberry Pi 295
Appendix D: String and Array Operations 303

Appendix E: Useful Online Resources 311

Index 313

xi

About the Author

Dr. Perry Xiao is an associate professor and course director at the School of Engineering,
London South Bank University, London, United Kingdom. He got his BEng degree in
Opto-Electronics, MSc degree in Solid State Physics, and PhD degree in Photophysics.
He is a chartered engineer (CEng), a Fellow (FIET) from Institution of Engineering and
Technology (IET) and a Senior Fellow (SFHEA) from Higher Education Academy
(HEA). He has been teaching electronics, software, computer networks, and telecom-
munication subjects at both undergraduate level and postgraduate level for nearly two
decades. He is also supervising BEng final project students and MSc project students
every year. His main research interest is to develop novel infrared and electronic sens-
ing technologies for skin bioengineering applications and industrial nondestructive
testing (NDT). To date, he has finished seven PhD student supervisions, obtained two
UK patent applications, published more than 100 scientific papers, been editorial
reviewer for nine journals, and generated nearly £1 million in research grants.

He is also a director and co-founder of Biox Systems Ltd., UK—a university spin-off
company that designs and manufactures state-of-the-art skin measurement instru-
ments, AquaFlux and Epsilon, which have been used in more than 70 organizations
worldwide, including leading cosmetic companies, universities, research institutes, and
hospitals.

xiii

Preface

When I first got the Arm® Mbed" Lab-in-a-Box (LiB) kits from a colleague a few
years ago, I could not hide my excitement. It was a box of mbed NXP LPC1768
development boards donated through the ARM University Program. One of the key
features of the Arm® Mbed" system is that you can write and compile your code
online through a web browser. This was completely new to me. I have been using vari-
ous microcontrollers throughout my life. I did my BEng final year project on laser
energy control using Intel’s 8051 single-chip microcontroller back in the 1980s. The
concept was very simple: read the voltage value from the laser power monitor, com-
pare it with a desired value, and calculate the required adjustment to feed back to the
laser to increase or decrease the laser output. But we had to design and make our own
printed circuit boards (PCB) and to write our own code that would run on 8051. At
that time, programming microcontrollers was not a trivial task. You needed to write
the program in assembly language and punch in the corresponding hexadecimal code
into the microcontroller. We spent many sleepless nights in the lab, mainly for debug-
ging the code. I have since worked with many other microcontroller-based embedded
systems, and the experiences were very mixed. Some of the embedded systems were
so difficult to use that you would need to download this software, download that
toolchain, etc. Using my students’ words, you needed a PhD just to get the compiler
software running. The code was also sophisticated—you would need to configure this
register, and configure that port. You could produce lines of lines of code, which did
not even do much!

The two embedded systems that impressed me most were Raspberry Pi and Arduino.
Raspberry Pi is very attractive for its price and its compact, credit-card size. With a full
Debian-based Linux operating system and graphical user interface, it is a great kit for
people to learn computing and coding. But for many of our student projects, we don’t
need a full operating system, and a lack of analog to digital converter (ADC) and digital
to analog converter (DAC) are also major drawbacks. Arduino is also attractive for its
price and size, but what impressed me most is its simplicity, both in hardware and soft-
ware. I have read many “24 hours” books, and Arduino is genuinely one of the things
that you can truly learn in 24 hours. It is just that simple. However, the limited memory
size means you cannot write too-long programs, and 10-bit ADC is often proven to be
inadequate in many applications.

So when I introduced the Arm® Mbed " NXP LPC1768 development boards to my
students, they loved them. They liked the web-based compiler. The very fact that you

XV

xvi

Preface

don’t need to download and install any software on your computer in order to run it is
amazing. It makes life so much easier. The code was also much simpler, much more
understandable. As it is claimed on the Arm® Mbed ™ website (https://os.mbed.com/
platforms/FRDM-K64F/), it can really just take 30 seconds to get the development
board out of the box, and run an application without installing any software!

The Arm® Mbed"™ NXP LPC1768 is one of the most popular microcontroller devel-
opment boards, widely used among students and electronic hobbyists. It is based on
32-bit ARM® Cortex' -M3 microcontroller with 96 MHz clock speed, 512 KB flash,
32 KB RAM, and, most importantly, 12-bit ADCs. It is more powerful and runs much
faster than Arduino. It also has lots of interfaces, including Ethernet, USB, CAN, SPI,
12C, DAC, PWM, and other I/O interfaces.

However, the 32-bit ARM® Cortex -M3 microcontroller is gradually reaching its
shelf life; its replacement is the 32-bit ARM® Cortex "-M4 microcontroller. So this book
will be focusing on the new, exciting Arm® Mbed" Ethernet Internet of Things (IoT)
Starter Kit, which includes an Arm® Mbed" NXP FRDM-K64F development board and
an Arm® Mbed"" application shield. The Arm® Mbed" NXP FRDM-K64F is the next
generation, flagship development board, which is based on ARM® Cortex"'-M4 micro-
controller with a CPU frequency up to 120 MHz, 1024 KB Flash, 256 KB RAM, and
astonishing two 16-bit ADCs. It is much faster and more powerful than NXP LPC1768.
It also has DACs and Timers, as well as other interfaces such as Ethernet, USB device
crystal-less, and Serial. The Arm® Mbed" Ethernet IoT Starter Kit is a cloud-based
development kit jointly developed by ARM and IBM. It provides the user with a slick
experience, sending data from the onboard sensors into the IBM cloud. It allows you to
access the IBM cloud applications through IBM’s BlueMix platform. It is particularly
suitable for developers with no specific experience in embedded or web development,
as it provides a platform for learning new concepts and creating working prototypes.
The starter kit hardware can also be modified and extended to satisfy your specific
requirements.

For backward compatibility reasons, many example codes also work for NXP LPC1768
development board and its mbed application board.

As of the time this book was written, the Arm® Mbed"" had just released its latest
Arm® Mbed ™ OS (operating systems) version 5.7, which has quite a few changes com-
pared with the previous version mbed OS 3.0 and 2.0. This book is mainly based on the
Arm® Mbed™ OS 5.7, and more details about the new OS are available at the Arm®
Mbed"™ documentation website (https://os.mbed.com/docs).

I have thoroughly enjoyed working with the Arm® Mbed" development boards, and
I hope you will enjoy it too.

How This Book Is Organized

This book aims to teach students how to design and develop embedded systems as well
as Internet of Things (IoT) applications using Arm® Mbed"" development boards. It is
divided into three parts.

Part I: Introduction to Arm® Mbed " and IoT (Chapters 1-3) gives an introduction of
embedded systems, microcontrollers and microprocessors, Arm® architecture and

https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/docs

Preface

Arm® Mbed™ system. It also provides an overview of the Internet of Things (IoT),
including IoT applications and IoT enabling technologies.

Part II: Arm® Mbed"™ Development (Chapters 4—10) illustrates how to get started
with Arm® Mbed"™ development, as well as how to work with analog inputs/outputs,
digital inputs/outputs, communication interfaces, debugging, online libraries, and
project managements.

Part III: The IoT Starter Kit and The IoT Projects (Chapters 11-12) introduces the
Arm® Mbed™ Ethernet IoT Starter Kit and provides some example IoT projects.

Part IV: Appendices
Appendix A: Example Codes
Appendix B: HiveMQ MQTT Broker
Appendix C: Node-RED on Raspberry Pi
Appendix D: String and Array Operations
Appendix E: Useful Resources

Example Codes

All the example source codes are available on the website that accompanies this book.
Appendix A has more details on how to use the codes.

Who This Book Is For

This book is intended for university/college students as well as amateur electronic hob-
byists. It assumes readers have a basic concept of how computers work and can compe-
tently use a computer, i.e., can switch the computer on, log in, run some programs, and
copy files to and from a USB memory stick (without losing their temper!).

It assumes that readers have some electronics experience, such as handling a bread-
board, wires, resisters, power supply, and LEDs. It also assumes readers have some basic
programming experiences (ideally in C/C++, but other languages are also fine), and
know the basic syntax, the different types of variables, the conditional selections, and
the loops and subroutines. Prior knowledge and experiences of microcontrollers are
desirable, but not necessary.

Finally, it assumes readers have a basic concept of computer networks and the
Internet, i.e., understand the concept of IP addresses and port numbers, know how to
find out the IP address of a computer, and can use some of the most commonly used
Internet services such as the World Wide Web, email, file download/upload, online
audio, online video, and even some cloud-based services.

This book can be used as a core textbook as well as a background-reading textbook.

Suggested Prerequisite Readings

Electronics:
Electronics All-in-One for Dummies, 2nd edition, Doug Lowe, ISBN: 978-1-119-32079-1,
March 2017.

Xvii

xviii

Preface

C/C++ Programming:

Beginning Programming with C for Dummies, Dan Gookin, ISBN: 978-1-118-73763-7,
November 2013.

C++ Primer, 5th edition, Stanley B. Lippman, Josée Lajoie, Barbara E. Moo, Addison
Wesley, ISBN: 978-0-321-71411-4, August 2012.

Computer Networks and Internet:

Computing Fundamentals: Digital Literacy Edition, Faithe Wempen with Rosemary
Hattersley, Richard Millett, Kate Shoup, ISBN: 978-1-118-97474-2, August 2014.

Understanding Data Communications: From Fundamentals to Networking, 3rd edition,
Gilbert Held, ISBN: 978-0-471-62745-6, October 2000.

What You Need

In this book, you will need:

o Arm® Mbed" Ethernet IoT Starter Kit

— NXP FRDM-K64F development board

— Mbed application shield

Breadboard with jump wires

Various sensors

A digital or analog oscilloscope (optional)

NXP LPC1768 development board and its Application board (optional)
Raspberry Pi (https://www.raspberrypi.org/) (optional)

Java JDK software (http://www.oracle.com/technetwork/java/javase/downloads/index
.html)

o Python software (https://www.python.org/downloads/) (optional)

https://www.raspberrypi.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.python.org/downloads/

Xix

Author’s Acknowledgments

I would like to express my sincere gratitude to Wiley Publishing for giving me this
opportunity. I would also like to thank Ella Mitchell for her persistence and patience.
Without it, this book would be not possible.

XXi

About the companion website

Don't forget to visit the companion website for this book:

& We%
T
www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

There you will find valuable material designed to enhance your learning, including:

o Examples

Scan this QR code to visit the companion website

Part |

Introduction to Arm® Mbed' " and loT

In this part:

Chapter 1: Introduction to Arm® Mbed ™

Chapter 2: Introduction to the Internet of Things (IoT)
Chapter 3: IoT Enabling Technologies

1

Introduction to Arm® Mbed "

Isn't it a pleasure to study and practice what you have learned?
- Confucius

1.1 Whatis an Embedded System?

An embedded system is a small-scale computer system that is part of a machine or a
larger electrical/mechanical system. It is often designed to perform certain dedicated
tasks and often a real-time system. It is called embedded because the computer system
is embedded within a hardware device. Embedded systems are important, as they are
getting increasingly used in many daily appliances, such as digital watches, cameras,
microwave ovens, washing machines, boilers, fridges, smart TVs, and cars. Embedded
systems also often need to be small in size, low in cost, and have low power
consumption.

Figure 1.1 shows the schematic diagram of a typical embedded system that includes a
microcontroller, inputs/outputs, and communication interfaces.

Microcontroller

Microcontroller is the brain of an embedded system, which orchestrates all the opera-
tions. A microcontroller is a computer processor with memory and all input/output
peripherals on it. More details about microcontrollers will be illustrated in the next
section.

Inputs

An embedded system interacts with the outside world through its inputs and outputs.
Inputs can be digital inputs or analog inputs. Inputs are typically used for reading data
from sensors (temperature sensor, light sensor, ultrasound sensor, etc.) or other types of
input devices (keys, buttons, etc.).

Outputs
Outputs can also be digital outputs or analog outputs. Outputs are typically used for
display, driving motors, or other devices (actuators).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

4

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Output Devices

/ (Actuators)

Input Devices
(Sensors)

Output Devices

Microcontroller .
(Display)

Input Devices
(Keys, buttons...)

\ Y\ Communication

Interfaces

Figure 1.1 Schematic diagram of a typical embedded system.

Communication Interfaces

An embedded system communicates with other devices using communication inter-
faces, which includes Ethernet, USB (Universal Serial Bus), CAN (Controller Area
Network), Infrared, ZigBee, WiFi and Bluetooth, for example.

1.2 Microcontrollers and Microprocessors

At the heart of embedded systems are microcontrollers. Although there are embedded
systems built on microprocessors, modern embedded systems are largely based on
microcontrollers. A typical microcontroller contains a central processing unit (CPU),
interrupts, timer/counter, memory, and other peripherals, all in a single integrated cir-
cuit (IC). A microcontroller is a true computer on a chip or system-on-a-chip (SoC).
Microcontrollers are ideal for control applications because you can use them to build an
embedded system with little additional circuitry.

Microcontrollers (MCU or pC) are different from microprocessors (MPU). A
microprocessor is a single IC with only a central processing unit (CPU) on it. In order
to make it functional, you will need to add external memory and other peripheral
devices. Figure 1.2 shows the main differences between a microprocessor and a
microcontroller. To put it simply, you can imagine that a microprocessor is just a CPU
on a single IC, while a microcontroller is a small computer with CPU, memory, and
other peripherals.

Microprocessors are mainly used in general-purpose systems like personal comput-
ers. They have relatively high computational capacity and can perform numerous tasks.
Microprocessors have relatively high clock frequency, usually in the order of gigahertz.
Microprocessors generally consume more power and often require external cooling
system.

Microcontrollers are designed for control applications and are generally used in
embedded systems. They have relatively low computational capacity and can perform
single or very few tasks. Microcontrollers have relatively low clock frequency, usually in
the order of megahertz. Microcontrollers consume less power and have no need for a
cooling system.

Figure 1.3 shows a more detailed schematic diagram of a microcontroller. Following
are its key components.

Introduction to Arm® Mbed™ | 5

/ Fas \
________________ -
Interrupts (—— I/O Ports
[IJ’D Ports] [Timer] [) /
~
CPU

T 0

Microprocessor

|
I
I
I
I
|
| ¢—— RAM
T V I ——
(cPu) @ ﬂ System Bus ! - .
| —_—
: ——— ROM
I
|

(=)=

External peripherals

Microcontroller

Figure 1.2 Comparison between a microprocessor and a microcontroller.

—: (oo) (o) (e) (o]
LT ¢ @ @ ﬂ ﬂ ’
Soefl, § 8

|-

! 1

:[RAM] [ROM/EPROM/EEPRDM] I[Serial 1/0 Ports] [Parallel 1I/O Ports
]

|

Oscillation
circuit

Figure 1.3 Detailed schematic diagram of a microcontroller.

CPU

CPU, often referred to as a processor or central processor, is the brain of a microcon-
troller. See Figure 1.4 for details. It contains three main components: the arithmetic
logic unit (ALU), the control unit, and registers. ALU performs arithmetic and logical
operations, registers provide operands to the ALU and store the results of ALU opera-
tions, and the control unit controls the overall operations and communicates with both
ALU and registers. The operation cycle of CPU can be described as fetch, decode, and
execute.

CPU communicates with its external peripherals such as memory and input/output
through system bus, which includes a data bus, an address bus, and a control bus. The
data bus is for carrying information, the address bus is for determining where the infor-
mation should be sent, and the control bus is for determining the operation. The address

6

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

CPU

Control Unit Input and Output

ALU

Registers

System Bus

Figure 1.4 Detailed schematic diagram of a CPU.

bus is unidirectional, from CPU to peripherals, while the data bus and control bus are
bidirectional.

CPU can be divided into different types, depending on the instruction set imple-
mented. The instruction set, also called instruction set architecture (ISA), is a set of
basic operations that CPU can perform. Two main types are complex instruction set
computing (CISC) and reduced instruction set computing (RISC). A CISC CPU has
very large instruction sets (300 and more) and more complex hardware, but has
more compact software code. It takes more cycles per instruction. It also uses less
RAM, as there is no need to store intermediate results. A RISC CPU has small
instruction sets (100 and less) and simpler hardware, but has more complicated
software code. It takes one cycle per instruction and uses more RAM to handle
intermediate results. Typical examples of CISC CPUs are AMD and Intel x86, which
are mainly used in personal computers, workstations, and servers, as they are capa-
ble of more sophisticated tasks. Typical examples of RISC CPUs are Atmel AVR,
PIC, and ARM®, which are mainly used in microcontrollers because they consume
less power.

Memory

Microcontrollers use memories for storing programs and data. There two types of
memory, internal and external. Internal memory is limited in size but is fast. For appli-
cations in which internal memory is not enough, external memory is then needed.
Traditionally, there are two types of external memory, random access memory (RAM)
and read-only memory (ROM). RAM can be accessed randomly and you can perform
both read and write operations to RAM. RAM will lose all its contents when power is
switched off. ROM is read-only memory, which means you can read data from it but
cannot write data to it. ROM does not lose its contents even if power is switched off;
therefore, it is used to store programs and data permanently.

Introduction to Arm® Mbed™

However, there are new types of memories, such as electrically erasable programma-
ble ROM (EEPROM) and non-volatile RAM (NVRAM). Both can be read and write and
do not lose its contents even if power is switched off. Flash memory is the best example
of NVRAM. It is high-density, low-cost, fast, and electrically programmable. Flash
memory is being extensively used for embedded systems that contain embedded oper-
ating systems and the application program.

Parallel Input/Output Ports

Parallel input/output ports have multiple wires (or pins) running parallel to each other.
It is called parallel because multiple signals can be accessed all at once. Parallel input/
output ports are mainly used to drive/interface various devices such as LCDs, LEDs,
printers, memories, and so on to a microcontroller. Parallel ports can transfer data
much faster than serial ports, but only suitable for short distance communications due
to interference and noise.

Serial Input/Output Ports

Serial input/output ports use a single data wire to transfer data. Serial ports therefore
are much slower than parallel input/output ports. However, serial ports can have higher
bandwidth, and can be used over longer distances. Universal Asynchronous Receiver/
Transmitter (UART) peripheral is a commonly used serial input/output port in embed-
ded systems. It uses one wire for receiving data (Rx) and one wire for transmitting
data (Tx).

Timers/Counters

Timers and counters are useful functions for a microcontroller. A microcontroller may
have more than one timer and counters. The timers and counters provide all timing and
counting functions inside the microcontroller, including clock functions, modulations,
pulse generations, frequency measuring, and making oscillations.

Analog to Digital Converter (ADC)

ADC converts analog signals to digital signals. It is mainly used for reading voltage
outputs of sensors. ADC can be 8 bits, 10 bits, 12 bits, 16 bits, 24 bits, and even 32 bits.
The higher the number of bits means the higher conversion resolution. The bandwidth
of an ADC (i.e., the range of frequencies it can measure) is determined by its sampling
rate or sampling frequency. According to Nyquist—Shannon sampling theorem, the
highest frequency that an ADC can measure is less than half of its sampling rate. The
typical ADC sampling rate of mbed boards is about a few hundreds kilohertz.

Digital to Analog Converter (DAC)

DAC is the opposite of ADC. DAC converts the digital signals into analog signals. It
usually used for controlling analog devices such as audio speakers, DC motors, and vari-
ous drives.

Interrupt Control
Interrupt is one of the most important and powerful features in microcontroller appli-
cations. The interrupt control is used to interrupt a working program. The interrupts

8

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

can be either hardware interrupts (external, activated by using interrupt pin) or soft-
ware interrupts (internal, by using interrupt instruction during programming).

Reset

Reset is an important function that exists in all microcontrollers. Reset can make sure
microcontrollers go back to its original state. This is important, especially when things
go wrong.

Watchdog

A watchdog, or watchdog timer, is a piece of electronic hardware that is commonly used
in embedded systems to automatically detect software malfunctions and to reset the
processor. A watchdog timer basically counts down from some initial value to zero. The
embedded software selects the counter’s initial value and periodically restarts it. If the
counter ever reaches zero before the software restarts it, the software is presumed to be
malfunctioning and the processor will be reset.

1.3 ARM® Processor Architecture

ARM?® (Advanced RISC Machine) architecture is a computer processor architecture
based on reduced instruction set computing (RISC). ARM® architecture was origi-
nally developed by British company Acorn Computers based in Cambridge, United
Kingdom in the 1980s. ARM® originally stood for Arcon RISC Machine. The first
ARM processors were used in BBC Microcomputers. Acorn started working with
Apple Computer and VLSI Technology in the late 1980s. In 1990, Acorn spun off the
design team into a new company named Advanced RISC Machines (ARM®) Ltd. The
company name was later changed to ARM® Holdings plc. ARM® Holdings plc floated
on the London Stock Exchange and NASDAQ in 1998. It became a member of the
FTSE 100 in 1999.

ARM® processors become increasingly popular after being used on Apple’s iPhone
and iPad since 2007. To date, ARM® processors are widely used in smartphones, tablets,
and smart TVs. Over 50 billion ARM® processors were produced as of 2014. In July
2016, ARM® Holdings has an annual turnover about £1 billion and agreed to a £24.3
billion takeover by Japan’s Softbank company. The takeover is largely seen as an invest-
ment for the Internet of Things (IoT), in which ARM® processors will be likely taking a
dominant role.

To date, ARM® processors can be generally divided into three categories: Application,
Real-time, and Microcontroller, as shown in Table 1.1. The ARM® application proces-
sors (Cortex-A series) are the most powerful processors, optimized for higher perfor-
mance, and can be typically used in phones, pads, tablets, and computers. The ARM®
Real-time processors (Cortex-R series), optimized for faster response, can be typically
used in industrial, home, and automotive applications. The ARM® Microcontroller
processors (Cortex-M series), optimized for smaller size, and lower power consump-
tion, can be typically used in embedded systems, and, of course, IoT applications!

Figure 1.5 shows the performance functionality and capacity of the ARM® Cortex-A,
Cortex-R, and Cortex-M processors.

Introduction to Arm® Mbed™ | 9

Table 1.1 ARM® architecture categories

Application Real-time Microcontroller

32-bit and 64-bit 32-bit 32-bit

A32,T32, and A64 A32 and T32 instruction sets T32 / Thumb® instruction set
instruction sets Protected memory system (optional ~ only

Virtual memory system virtual memory) Protected memory system
Supporting rich operating Optimized for real-time systems Optimized for microcontroller
systems applications

Real Time Application
Cortex Processors Cortex Processors
Cortex-A7X Series

Cortex-ASX Series

Cortex-A3X Series
Cortex-R7/8

Cortex-R4/5/52

Performance Functionality

Capacity

Figure 1.5 The performance functionality and capacity of ARM® processors (reproduced according to:
https://www.arm.com/products/processors/).

Table 1.2 shows the different Cortex-M microcontrollers. The Cortex-MO, Cortex-
MO+, and Cortex-M23 controllers are designed for the lowest power consumptions.
The Cortex-M3, Cortex-M4, and Cortex-M33 controllers are designed for the highest
efficiency. The Cortex-M7 controllers are designed for the highest performance. In this
book, we will focus only on the ARM® Microcontroller processors, specifically the
Cortex-M4 series.

Figure 1.6 shows the features and functions of ARM® Cortex-M series processors.

Further Information about ARM® Processor Architecture

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture
https://www.arm.com/products/processors/

10| Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

Table 1.2 The Cortex-M Series Microcontrollers

Lowest Power and Area Performance Efficiency Highest Performance
Cortex-M23 Cortex-M33 Cortex-M7

TrustZone in smallest area, lowest Flexibility, control and DSP Maximum performance,
power with TrustZone control and DSP
Cortex-MO+ Cortex-M4

Highest energy efficiency Mainstream control and DSP

Cortex-M0O Cortex-M3

Lowest cost, low power Performance efficiency

Freely available for design and
simulation via DesignStart

e > o x
| /@ aom comenumay x
!(— 3 C | @ amLod[GB] | PTps cOmmuniyam.com, - e 10 . ; e
arm Community Q, Search a

|rm Blog Content People Communities

» Bee Hayes-Thakore

ower 3 years ago

ARMCORTEX
b =
- nlv]¢]s]3]
dsp

Cortex-M7

#
atmel
techconzola
Hamrrum DSC Perormance
T Dy Sgeal Covarol (D5 Funte Memary System
ety g Cacha TCH, AECC # cortex-m7
Acoalerses SHO Dicable & Sngle Precaion I#
Fioating pont (FF) P et
Ovgeal Sgral Comorol apphcanon wpace
+# lreescale

Processors requires membership for participation - click to join

Figure 1.6 The features and functions of ARM® Cortex-M series processors from the ARM® website.
(Source: https://community.arm.com/processors/b/blog/posts/
meet-the-new-arm-cortex-m7-processor-supercharging-embedded-devices)

1.4 The Arm® Mbed™ Systems

The Arm® Mbed™ is a platform and operating system based on 32-bit ARM® Cortex-M
microcontrollers. It is collaboratively developed by ARM® and its technical partners,
and is designed for Internet of Things (IoT) devices. It provides the operating system,
cloud services, tools, and developer ecosystem to make the creation and deployment of
IoT solutions possible.

One of the major features of the Arm® Mbed " systems is its web-based development
environment. Just plug the device into computer using a USB cable, which will appear
on your computer as a USB memory stick. Write and compile your software code using
the Arm® Mbed™ Online Compiler, download the compiled code into the device, and
press the onboard reset button to run!

https://community.arm.com/processors/b/blog/posts/meet-the-new-arm-cortex-m7-processor-supercharging-embedded-devices
https://community.arm.com/processors/b/blog/posts/meet-the-new-arm-cortex-m7-processor-supercharging-embedded-devices

Introduction to Arm® Mbed™ | 11

Arm® Mbed™ provides all you need to develop IoT and embedded devices. It has a
full support for over 100 mbed-enabled boards and more than 400 components. It also
has tools for writing, building, and testing applications, and server and client-side tools
to communicate with your devices.

The mbed microcontrollers provide experienced embedded developers a powerful
and productive platform for building proof-of-concepts. For developers new to 32-bit
microcontrollers, mbed provides an accessible prototyping solution to get projects built
with the backing of libraries, resources, and support shared in the mbed community.

Figure 1.7 and Figure 1.8 show the Arm® Mbed " home page, and the corresponding
developer website. Figure 1.9 shows a list of development boards that is supported by
the Arm® Mbed™. There are several development boards worth mentioning:

1.4.1 NXPLPC1768

This is one of the most popular development boards. It is based on the NXP LPC1768
microcontroller, with a 32-bit ARM® Cortex-M3 core running at 96 MHz. It has 512 KB

e

arm meebp Mbed S MbedCloud Partner Portal Search a

Platform = Technologies * Partners = About Us = - English @

Welcome to

How Mbed Works

loT devices Mbed Cloud Web integrations

{2 Your
Web business

Device |)

Your software Mbed EonnBClng N

vice opplicol TLs L ¥ interface O
Mbed O3 @

Figure 1.7 The Arm® Mbed™ website (top) and the schematic diagram of mbed systems (bottom).

™

12| Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed

(e

| & = & 0 st a i

QrMMBED Moedts MosaCoud faris foral ot a

Arm Mbed OS developer site

Mbed OS 5

[JEETSRESe— Ot program

Figure 1.8 The Arm® Mbed™ developed website. The URL used to be https//developer.mbed.org, but
has changed to https//os.mbed.com.

i i Boards
i3 i3 » -
. <. B
=] i r
s » » @
p . d
=] =] =]

FROM-KLZST PP LPCAO0-MAX oG

Figure 1.9 The Arm® Mbed" development boards. The URL used to https//developer.mbed.org/
products, but has changed to https//os.mbed.com/products.

flash, 32 KB RAM and lots of interfaces, including built-in Ethernet, USB host and
device, CAN, SPL, I2C, ADC, DAC, PWM, and other I/O interfaces. The 12 bits of ADC
are particularly useful. Figure 1.10 shows the board and its pinouts, including com-
monly used interfaces and their locations. The pins P5-P30 can also be used as Digitalln
and DigitalOut interfaces.

Features

e NXP LPC1768 MCU
— High-performance ARM® Cortex "-M3 Core
- 96 MHz, 32 KB RAM, 512 KB flash
— Ethernet, USB host/device, 2xSPI, 2xI2C, 3xUART, CAN, 6xPWM, 6xADC
(12 bits), GPIO

http://https//developer.mbed.org
http://https//os.mbed.com
http://https//developer.mbed.org/products
http://https//developer.mbed.org/products
http://https//os.mbed.com/products

Introduction to Arm® Mbed™ | 13

B mbed LPC1768 | Mbed X

&« C | & Secure | https://os.mbed.com/platforms/mbed-LPC1768/ @Q ¥

)

Figure 1.10 The NXP LPC1768 development board and its pinout from the Arm® Mbed™ website.
(Source: https://os.mbed.com/platforms/mbed-LPC1768/)

e Prototyping form-factor

— 40-pin 0.1" pitch DIP package, 54x26mm

— 5V USB or 4.5-9V supply

— Built-in USB drag ‘n’ drop flash programmer
o mbed.org developer website

— Lightweight online compiler

— High level C/C++ SDK

— Cookbook of published libraries and projects

There is also an mbed Application Board for NXP LPC1768 (Figure 1.11. The NXP
LPC1768 and its mbed application board make a great learning kit.

Features

128 x 32 graphics LCD

5 way joystick

2 x potentiometers

3.5 mm audio jack (analog out)
Speaker, PWM connected

3 Axis +/1 1.5g accelerometer
3.5mm audio jack (analog in)
2 x Servo motor headers
RGB LED, PWM connected
USB-mini-B connector
Temperature sensor

https://os.mbed.com/platforms/mbed-LPC1768/

14| Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

Notes

The new application board has been designed to enable the maximum number of potential experiments
and projects, with the minimum footprint.

Figure 1.11 The mbed application board for NXP LPC1768 development board, front (left) and back
(right), from the Arm® Mbed"™ website. (Source: https://os.mbed.com/components/
mbed-Application-Board/)

Socket for Xbee (Zigbee) or RN-XV (WiFi)
RJ45 Ethernet connector

USB-A connector

1.3 mm DC jack input

Further Information about LPC1768

https://os.mbed.com/platforms/mbed-LPC1768/
https://os.mbed.com/components/mbed-Application-Board/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-
cortex-m-mcus/lpc1700-cortex-m3/arm-mbed-lpc1768-board:OM11043

1.4.2 NXPLPC11U24

This is another interesting development board. It is based on the NXP LPC11U24, with a
32-bit ARM® Cortex-MO core running at 48 MHz. It includes 32 KB flash, 8 KB RAM,
and lots of interfaces, including USB device, SPI, I12C, ADC, and other I/O interfaces.
Figure 1.12 shows the board and its printout, including the commonly used interfaces and
their locations. The pins P5-P30 can also be used as Digitalln and DigitalOut interfaces.

Different from NXP LPC1768, NXP LPC11U24 is much slower and less powerful, but
it uses less power and is much cheaper, so it is mainly designed for low-cost USB devices
and battery-powered applications.

Features

e NXP LPC11U24 MCU
e Low power ARM® Cortex"'-MO core

https://os.mbed.com/platforms/mbed-LPC1768/
https://os.mbed.com/components/mbed-Application-Board/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1700-cortex-m3/arm-mbed-lpc1768-board:OM11043
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1700-cortex-m3/arm-mbed-lpc1768-board:OM11043
https://os.mbed.com/components/mbed-Application-Board/
https://os.mbed.com/components/mbed-Application-Board/

Introduction to Arm® Mbed™

2] - [m] X
. mbed LPC11U24 | Mbed X

“ = | @ Secure | https://os.mbed.com/platforms/mbed-LPC11U24/ @, ‘i'-\i'| :

sy A R R

sbhsd NX 1

-

Figure 1.12 The NXP LPC11U24 development board and its pinout from the Arm® Mbed"™ website.
(Source: https://os.mbed.com/platforms/mbed-LPC11U24/)

48 MHz, 8 KB RAM, 32 KB flash

USB device, 2xSPI, 12C, UART, 6xADC, GPIO
Prototyping form-factor

40-pin 0.1" pitch DIP package, 54x26mm

5V USB, 4.5-9V supply or 2.4-3.3V battery
Built-in USB drag ‘n’ drop flash programmer
mbed.org developer website

Lightweight online compiler

High-level C/C++ SDK

Cookbook of published libraries and projects

Further Information about LPC11U24

https://os.mbed.com/platforms/mbed-LPC11U24/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-
cortex-m-mcus/lpc1100-cortex-mO-plus-m0O/arm-mbed-lpc11u24-board:OM13032

1.4.3 BBC Micro:bit

The BBC micro:bit is a pocket-sized, codable computer, developed by BBC through a
major partnership with 31 organizations, including ARM®, NXP, element14, Microsoft,

15

https://os.mbed.com/platforms/mbed-LPC11U24/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/arm-mbed-lpc11u24-board:OM13032
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/arm-mbed-lpc11u24-board:OM13032
https://os.mbed.com/platforms/mbed-LPC11U24/

16

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

and Cisco. Figure 1.13 shows the board and its printout. It allows anyone to get creative
with technology. BBC has donated a free micro:bit to every 11- or 12-year-old child in
year 7 or equivalent across the United Kingdom.

The BBC micro:bit is based on a Nordic nRF51822 MCU with 16K RAM and 256K
Flash. There’s also an onboard accelerometer and magnetometer from Freescale.

Features

e Can be programmed with high-level online IDEs using the BBC'’s website at
http://www.microbit.co.uk/create-code including:
— Microsoft TouchDevelop IDE
— Microsoft Blocks
— CodeKingdoms Javascript
— MicroPython
o mbed enabled
— Online IDE at developer.mbed.org
— Easy to use C/C++ SDK
— Dedicated micro:bit runtime libraries for rapid development (developed by
Lancaster University)

B BBC micrombit |Mbed X

— C | @ Secure | https:/fos.mbed.com/platforms/Microbit/ hg

Pinout

&

Figure 1.13 The BBC Micro:bit development board and its pinout from the Arm® Mbed™ website.
(Source: https://os.mbed.com/platforms/Microbit/)

http://www.microbit.co.uk/create-code
https://os.mbed.com/platforms/Microbit/

Introduction to Arm® Mbed™

e Nordic nRF51822 multi-protocol Bluetooth® 4.0 low energy/2.4GHz RF SoC
32-bit ARM® Cortex M0 processor (16MHz)
- 16 kBRAM
256 kB Flash
Bluetooth Low Energy Master/Slave capable
o Input/Output
— 25 LED matrix
— Freescale MM A8652 3-axis accelerometer
— Freescale MAG3110 3-axis magnetometer (e-compass)
— Push Button x2
— USB and Edge connector serial I/O
— 2/3 reconfigurable PWM outputs
— 5 x banana/croc-clip connectors
— Edge connector
— 6 x analogin
— 6-17 GPIO (configuration dependent)
— SPI
- i2¢c
e USB Micro B connector
¢ JST power connector (3v)

Further Information about Micro:bit

https://www.microbit.co.uk/
https://os.mbed.com/platforms/Microbit/

1.4.4 The Arm® Mbed™ Ethernet Internet of Things (IoT) Starter Kit

This Ethernet IoT Starter Kit includes an Arm® Mbed"" Freedom FRDM-K64F develop-
ment board and mbed application shield (Figure 1.14). It is designed for the IBM IoT
Foundation and is aimed to provide the user with a slick experience. It allows the user
to send data from the onboard sensors into the IBM cloud easily. It is particularly suit-
able for developers with no specific experience in embedded or web development, as it
provides a platform for learning new concepts and creating working prototypes. It
allows the user to access to IBM cloud applications through IBM’s BlueMix platform, in
which deployment and device management are very simple. The starter kit hardware
can also be modified and extended to suit specific needs.

The FRDM-K64F development board is the next-generation development board. It
uses a power-efficient Kinetis K64F MCU featuring an ARM® Cortex®-M4 core run-
ning up to 120 MHz and embedding 1024 KB Flash, 256 KB RAM, and lots of peripher-
als (16-bit ADCs, DAC, timers) and interfaces (Ethernet, USB device crystal-less, and
serial). The new mbed application shield has been designed to enable the maximum
number of potential experiments with Arduino form factor development boards, keep-
ing as much in common with the mbed application board as possible.

This book focuses on the Arm® Mbed ™ IBM Ethernet IoT Starter Kit.

The Arm® Mbed " Ethernet IoT Kit contents:

https://www.microbit.co.uk
https://os.mbed.com/platforms/Microbit/

18| Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

T

FENEENER KK

po
-
-

Figure 1.14 The Arm® Mbed" Ethernet Internet of Things (IoT) Starter Kit, which includes a FRDM-
K64F development board (left) and its application shield (right).

Mbed Enabled NXP K64F Development Board

o NXP K64F Kinetis K64 MCU (MK64FN1MOVLL12)
e High-performance ARM® Cortex"'-M4 Core with floating point unit and DSP
e 120 MHz, 256 KB RAM, 1 MB flash

mbed Application Shield

128x32 graphics LCD

5-way joystick

2 x potentiometers

Speaker, PWM connected

3-axis +/1 1.5 g accelerometer

RGB LED, PWM connected

Temperature sensor

Socket for XBee (ZigBee) or RN-XV (WiFi)

MCU Features

o Kinetis MK64FNIMOVLL12 in 100LQFP

o Performance
— ARM® Cortex'"'-M4 32-bit core with DSP instructions and floating point unit (FPU)
— 120 MHz max CPU frequency

e Memories and memory interfaces
— 1024 KB program flash memory

Introduction to Arm® Mbed™

- 256 KB RAM
— FlexBus external bus interface
e System peripherals
— Multiple low-power modes, low-leakage wake-up unit
— 16-channel DMA controller
o Clocks
— 3x internal reference clocks: 32 KHz, 4 MHz, and 48 MHz
— 2x crystal inputs: 3—32 MHz (XTALO) and 32 kHz (XTAL32/RTC)
— PLL and FL
e Analog modules
2x 16-bit SAR ADCs up 800 ksps (12-bit mode)
— 2x 12-bit DACs
3x analog comparators
— Voltage reference 1.13 V
o Communication interfaces
— 1x 10/100 Mbit/s Ethernet MAC controller with MII/RMII interface IEEE1588
capable
— 1x USB 2.0 full-/low-speed device/host/OTG controller with embedded
3.3V/120mA Vreg, and USB device crystal-less operation
— 1x Controller area network (CAN) module
— 3x SPI modules
— 3x I2C modules. Support for up to 1 Mbit/s
— 6x UART modules
— 1x Secure dgital host controller (SDHC)
— 1x I2S module
e Timers
— 2x 8-channel Flex-Timers (PWM/Motor control)
— 2x 2-channel Flex-Timers (PWM/Quad decoder)
32-bit PITs and 16-bit low-power timers
— Real-time clock (RTC)
— Programmable delay block
e Security and integrity modules
— Hardware CRC and random-number generator modules
— Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256
algorithms
o Operating characteristics
— Voltage range: 1.71t0 3.6 V
— Flash write voltage range: 1.71 to 3.6 V

Board Features

e Onboard components
— FXOS8700CQ—6-axis combo sensor accelerometer and magnetometer
— 2 user push buttons
- RGB LED
o Connectivity
— USB full-/low-speed on-the-go/host/device controller with on-chip transceiver, 5
V to 3.3 V regulator and micro-USB connector

19

20

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

— Ethernet 10/100 controller with onboard transceiver and RJ45 connector
— Upto 5x UARTS, 2x SPIs, 2x 12Cs and 1x CAN connected to headers (multiplexed
peripherals)
o Extensions
— Micro SD-card socket
— Headers compatible with Arduino R3 shields (32-pins / outer row)
— Headers for proprietary shields (32-pins / inner row)
o Analog and digital IOs (multiplexed peripherals)
— Up to two ADC 16-bit resolution with 28 analog I/O pins connected to headers
Up to three timers with 18 PWM signals accessible from headers
— Up to six comparator inputs or one DAC output
— Up to 40 MCU I/O pins connected to headers (3.3 V, 4 mA each, 400 mA max total)
e Board power-supply options (onboard 5 to 3.3 V regulator)
USB debug 5V
— USB target 5V
— 5-9V Vin on Arduino headers
— 5V PWR input
— Coin-cell 3.3V
o Integrated open SDA USB debug and programming adapter
— Several industry-standard debug interfaces (PEmicro, CMSIS-DAP, JLink)
— Drag-n-drop MSD flash programming
— Virtual USB to serial port
e Form factor: 3.2" x 2.1" / 81 mm x 53 mm
o Software development tools
— mbed HDK & SDK enabled
— Online development tools
— Easy-to-use C/C++ SDK
— Lots of published libraries and projects
— Alternate offline options NXP free KDS (compiler toolchain) and KSDK library/
examples
o Supplier website: http://www.nxp.com/frdm-k64F

Figure 1.15 shows the FRDM-K64F development board’s component layout and
pinout. Following are the most used pins:
RGB LED LED1 (LED_RED), LED2(LED_GREEN), LED3 (LED_BLUE), LED4
(LED_RED)
Digital inputs/outputs DO, D1, D2, ..., D15
Analog inputs A0, A1, A2, A3, A4, A5
Analog outputs DACO_OUT
PWM (pulse width modulation) A4, A5, D3, D5, D6, ..., D13

Further Information about FRDM-K64F

https://os.mbed.com/platforms/IBMEthernetKit/
https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/components/mbed-Application-Shield/
http://www.nxp.com/frdm-k64f

http://www.nxp.com/frdm-k64F
https://os.mbed.com/platforms/IBMEthernetKit/
https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/components/mbed-Application-Shield/
http://www.nxp.com/frdm-k64f

Introduction to Arm® Mbed™ | 21

B FRDLa1 | et

€ C [@ rpsoamaedcom pattorms FAOM-£84F #

Component Pinout

Foliowing figure incicates the Kinetis K&4F signal connections with the board components (RGE LED,
Mezicn Sengar] smd exseraion connpetses (uSD Card, Blustaoth snd RF Feadses

N®

FRDM-KE4F

Additional Perigherals

= sCL
o S0A
Accelerometer + INT]
Magretometer INT?

N RO 0848 | bt

€2 C0 ‘oembed.com;plat

Arduino and NXP Header Pinout

Frosdom aard headers £nabie up 1o &4-pns and ghe s

most of the Kinetls K63F signals

Figure 1.15 FRDM-K64F development board’s component layout (left) and the Arduino and NXP
header pinout from the Arm® Mbed"" website. (Source: https://os.mbed.com/platforms/FRDM-K64F/)

1.5 Summary

This chapter first explains what an embedded system is and discusses the difference
between microcontrollers and microprocessors. It then introduces the ARM® architec-

ture and Arm® Mbed™ systems.

1.6 Chapter Review Questions

Q1.1 What is an embedded system?

Q1.2 What is the difference between microcontrollers and microprocessors?

Q1.3 How does CPU work?

Q1.4 Use a suitable diagram to describe ARM® Processor Architecture.

Q1.5 What is Arm® Mbed"'? Describe the concepts of mbed cloud services, clients,

and mbed OS.

Q1.6 Use a table to compare the key features between LPC1768 and FRDM-K64F.

https://os.mbed.com/platforms/FRDM-K64F/

2

Introduction to the Internet of Things (loT)

Genius is 1 percent inspiration and 99 percent perspiration.
- Thomas A. Edison

2.1 What is the Internet of Things (loT)?

The Internet of Things (I0T) refers to the network of physical objects, It is fast growing
and already has billions of devices connected (Figure 2.1). This is different from the
current Internet, which is largely a network of computers, including phones and tablets.
The “things” in the IoT can be anything from household appliances, machines, goods,
buildings, and vehicles to people, animals, and plants. With the 10T, all the physical
objects are interconnected, capable of exchanging data with each other without human
intervention. They can be accessed and controlled remotely. This is going to completely
transform our lives—it will be truly revolutionary.

The concept of connecting devices together is not new. In 1982, a Coke machine at
Carnegie Mellon University became the first appliance connected to the Internet. It could
keep track of inventory and whether drinks were cold. Since then, connectedness has greatly
expanded, in the areas of ubiquitous computing, machine-to-machine (M2M) communica-
tions, and device-to-device (D2D) communications. But the term IoT was invented by
British entrepreneur Kevin Ashton in 1999, in a presentation he made to Procter & Gamble.
As that time, he was the cofounder and executive director of the Auto-ID Center at MIT,
and the vision of IoT was based on radio-frequency identification, or RFID (radio-frequency
identification). IoT has evolved since, and became increasingly popular in recent years, due
to the convergence of several enabling technologies, such as microcontrollers, sensors, wire-
less communications, embedded systems, and micro-electromechanical systems (MEMS).

Today, the IoT is largely seen as the next big thing, the future of the Internet. According
to Internet Society, there will be about 100 billion IoT devices and a global market of
more than $11 trillion by 2025. IoT will grow exponentially just like what the Internet
did about two decades ago.

Further Information about loT
http://internetofthingswiki.com/
http://www.theinternetofthings.eu/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

23

http://internetofthingswiki.com
http://www.theinternetofthings.eu

24

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Figure 2.1 The symbolic view of the Internet of Things (loT). (Source: https://pixabay.com/en/
network-iot-internet-of-things-782707/)

http://www.computerweekly.com/resources/Internet-of-Things-IoT
http://www.ibm.com/Watson/IoT
https://www.microsoft.com/en-gb/internet-of-things/
http://www.cisco.com/c/en_uk/solutions/internet-of-things/overview.html

2.2 How Does loT Work?

There are several steps in order to make the Internet of Things (IoT) work.

First, each “thing” on the Internet of Things must have a unique identity. Thanks to
Internet Protocol Version 6 (IPv6) address, the 128-bit next-generation Internet
Protocol (IP) address can provide 2128 different addresses—that is about 6.7 x 10%
addresses per square meter. We should be able to assign a unique ID to every physical
object on the planet.

Second, each “thing” must be able to communicate. There are number of modern
wireless technologies which make communications possible, such as WiFi, Bluetooth
Low Energy, Near-field communication (NFC), RFID, as well as ZigBee, Z-Wave, and
6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), etc.

Third, each “thing” needs to have sensors so that we can get information about it.
Sensors can be temperature, humidity, light, motion, pressure, infrared, ultrasound sen-
sors, etc. The new sensors are increasingly getting smaller, cheaper, and more durable.

Fourth, each “thing” needs to have a microcontroller (or microprocessor) to manage
the sensors and communications, and to perform the tasks. There are many microcon-
trollers exist that could be used for IoT, but the ARM® based microcontrollers are no
doubt one of the most influential ones. This book is focused on the Arm® Mbed™
microcontrollers.

http://www.computerweekly.com/resources/Internet-of-Things-IoT
http://www.ibm.com/Watson/IoT
https://www.microsoft.com/en-gb/internet-of-things/
http://www.cisco.com/c/en_uk/solutions/internet-of-things/overview.html
https://pixabay.com/en/network-iot-internet-of-things-782707/
https://pixabay.com/en/network-iot-internet-of-things-782707/

Introduction to the Internet of Things (loT) | 25

Finally, we will need cloud services to store, analyze, and display data so that we can
see what’s going on and take action via phone apps. There are already a lot of big com-
panies working on this, such as IBM’s IBM Watson, Google’s Google Cloud Platform,
Microsoft’s Azure, and Oracle’s Oracle Cloud etc. The Arm® Mbed ™ is also developing
its own cloud (https://cloud.mbed.com/), but as of this writing, it is still on its first
release, only available to a select group of industrial lead partners.

2.3 How Will lIoT Change Our Lives?

The Internet of Things will fundamentally change the way we live and change the way
we interact with world.

We all had this “where are my keys” experience before. Well, in the world of 10T, we
probably won't need our keys anymore! Our phones are the keys, we are the keys. We
could open the doors using phones, or using our biometric information, such as finger-
prints, palm prints, palm veins, iris, retina, face, and voice. For example, just like in the
folk tale Ali Baba and the Forty Thieves, you could open your home door by saying
“Open Sesame.” But this time is different—only you and your family can open the door,
while others cannot, thanks to voice recognition, which can uniquely identify you and
your family.

IoT can also make our homes smarter. This is already happening, with all these smart
locks, smart meters, smart thermostats, smart lighting, smart grid, and smart cars, etc.
Figure 2.2 shows an example of smart meters and thermostat. The smart home can
wake you up in the morning and start the coffee machine while you are in still the
shower. It can switch on the lights just before you enter the room and switch the lights
off immediately after you leave. As a father of two teenager kids, it will save me the has-
sle of running upstairs and downstairs to switch off the lights after they leave the rooms.
It can allow you to switch on the TV and change channels using your voice commands.

' W

Figure 2.2 Landis Smart Electricity Meter (left) and Nest Learning Thermostat (right). (Source: https://
commons.wikimedia.org)

https://cloud.mbed.com
https://commons.wikimedia.org
https://commons.wikimedia.org

26

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

It can also sense you are coming home and adjust the thermostat or even preheat the
oven. With the advances of artificial intelligence (Al), it also possible to analyze or learn
your living pattern, to turn the heating or air conditioning on when you are at home and
turn the heating or air conditioning off when you are not. This is even more significant
for public buildings, like offices, theaters, hospitals, and museums, where the utility bill
is always a large chunk of the monthly spending.

Both my father and my wife’s father suffered a stroke, which paralyzed them and con-
fined them to beds. Wouldn't it be nice if we all could have wearable or in-plant sensors,
that could monitor our heart rate, blood pressure, body temperature, body mass index
(BMI), maybe even blood sugar levels or cholesterol levels, 24 hours a day and 7 days a
week? We could then predict and prevent the stroke even before it happens. We might
also be able to predict many other deadly diseases such as cancers by using big data
analysis and machine learning, so that we could get treated in the earlier stages, and
significantly reduce the needs for hospital admissions. We are going to live healthier
and longer, much, much longer.

Many people around the world suffer food allergies or intolerances. The most com-
mon are to milk, eggs, peanuts, shellfish, tree nuts, soy, and wheat. This can make
routine food shopping a daunting tasking. You must carefully read through the small
prints to figure out whether this product contains the ingredient you would want to
avoid. This will change, of course. Your phone, or any other devices, will tell you which
food product is right for you. This will also help people on a diet and the people who
have special nutrition requirements, such as athletes. After finishing shopping, there
will be no need to check out. By the time you walk out of the supermarket, your pur-
chases will already have been tallied and the total charged to your credit card. The
receipt will be sent to your email or your phone. Just think of the time you could save
in the queue for checking out, especially during peak hours—imagine no longer wait-
ing while the person in front of you gets a price check or tries to pay in coins! If you
don’t like something you bought, or simply just changed your mind, you can simply
return it to a designated area, where the item will be automatically examined. If it is in
satisfactory condition, a refunded will be issued. No questions asked, no signature
required. I like that!

Bullying is a serious issue in many schools. In countless occasions, the victims, or the
parents of the victims, feel powerless, as they can neither prevent, nor prove, what has
happened. With 10T, this will be completely different. Victims could be wired up with
sensors that can automatically logged voice, video, as well as other information in the
cloud storage, and warning messages could be sent to parents and the school. The
school could immediately know at exactly which place, at exactly what time, exactly
who were involved and exactly what has happened. Bullies could be punished swiftly
and fairly. Common sense tells us, if you know that you are definitely going to be caught
for what you are going to do, you probably would not do it in the first place. Bullying
could be a thing of past!

This might also apply to crimes. Many big criminals start with small crimes, and they
often commit the crime because they thought they could get away with it. After suc-
cessfully getting away with a series of small petty crimes, they start to commit more
serious crimes. This escalating cycle continues until one day they caught by police and
sent to prison. After release from prison, with a criminal record, it is very difficult to
get any decent job. So many of them return to crimes, and the vicious cycle repeats

Introduction to the Internet of Things (loT) | 27

again. If we could stop them at the petty crime stage, by using IoT technologies, as
illustrated in the bullying example, they probably would never grow into serious crimi-
nals. So finally, Utopia—a dream that so many people from so many countries have
fought so hard for so long—might be achievable through a technology revolution!
Imagine that!

But just like many things in the life, IoT is not, of course, without controversy. There
are many concerns about IoT. On the top of the list are security and privacy. If you can
access your home appliances remotely, someone else could also access them remotely.
There are already many reports on hacking into cameras, meters, household appliances,
phones, and cars. So security has to be the top priority of any IoT developments.

Privacy is another concern. There will be tons of our information available, such the
name, the date of birth, gender, the address, the telephone number, the credit cards, the
things we do, the products we buy etc. Who owns this information, and who can access
this information? Do you really want everyone to know where you are and what you do?
Do schoolchildren want to wear a wire for us to hear all their conversations? (Not likely?)
Do you really want everyone to know who you are calling, and what you are talking
about? Do you want your entire lives digitally recorded, on the off-chance a criminal
might be caught? Privacy is one of the most important human rights. No one wants to
live in a Big Brother state. So the whole community must have input, to make sure we
have the balance right—that innocent, law-abiding citizens can enjoy their right of pri-
vacy, while the police can have enough information to fight the crime and prevent ter-
rorist attacks.

2.4 Potential loT Applications

2.4.1 Home

Smart homes will be probably the most popular IoT applications. Smart home, or
home automation, is an extension of building automation, with which we can monitor
and control heating, ventilation and air conditioning (HVAC), lighting, appliances,
and security systems. By connecting all the home appliances, we can automate many
daily routines, such as automatically turning on and off the lights and heating, start-
ing or stoping cooking and washing, and so on. With the smart grid and smart meters,
we can reduce the energy usages and utility bill, and with security systems, we can
make the home more secure by automatically detecting, and hopefully deterring,
intrusion using various of infrared, motions, sound, vibration sensors as well as alarm
systems.

Smart home can also make elderly and disabled people more comfortable and safer at
home. With the IoT, we can collect and analyze data from elderly and disabled people to
diagnose diseases, predict potential risks, identify or prevent accidents such as falls,
open or lock the door (or windows) remotely, and let family members monitor them
remotely. With the IoT, it is also possible to get elderly and disabled people more con-
nected to the outside world and reduce their sense of loneliness.

The smart home market was predicted to have a market value over US$137 billion by
the year 2023, according to Markets and Markets (see marketsandmarkets.com, July
2017, Report Code: SE 3172).

http://marketsandmarkets.com

28

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

2.4.2 Healthcare

The IoT make it possible for remote health monitoring and emergency notification sys-
tems. A very popular approach is through wearable technologies. These wearable
devices can collect a range of health data, such as heart rate, body temperature, and
blood pressure, which can then be wirelessly transmitted to a remote site for storage
and further analysis. This also enables telehealth/telemedicine, i.e., to diagnose or treat
patients remotely.

2.4.3 Transport

The IoT can significantly improve transport systems. With all the cars connected, it is
much easier to plan your journey, avoid traffic jams, find a parking space, and reduce
traffic accidents. The driverless cars will no doubt have the biggest impact. Many compa-
nies—such as Tesla, Google, Uber, Volvo, Volkswagen, Audi, and General Motors—are
actively developing and promoting them. The driverless cars can make our journey more
enjoyable, and possibly much safer. Getting a driving license could soon be a thing of past!

The IoT can also benefit public transport. By connecting all the information boards
and advertising billboards at train stations and airports, it helps passengers to get regu-
lar updates, and in the event of an accident, to detect problems quickly and cutting
maintenance costs. By improving end-to-end visibility, warehouse management, and
fleet management, the IoT will also benefit the logistics industry.

244 Energy

By integrating sensors and actuators, it is likely to reduce energy consumption of all the
energy-consuming devices. The IoT will also modernize the power industry infrastruc-
ture, to improve efficiency and productivity.

2.4.5 Manufacture

The application of IoT in industry often referred as Industry 4.0, or the fourth Industrial
Revolution (Figure 2.3). The first Industrial Revolution took place in eighteenth
century, when steam engine mobilized the industrial production. The second Industrial
Revolution took place in earlier nineteenth century, when electric power powered
mass production. The third Industrial Revolution, or the Digital Revolution, took place
at the end of nineteenth century, when electronics and IT further automated produc-
tion. Industry 4.0 builds on cyber-physical systems that tightly integrate machines,
software, sensors, Internet, and users together. It will create smart factories, in
which machines can use self-optimization, self-configuration, and even artificial intel-
ligence to complete complex tasks in order to deliver vastly superior cost-efficiencies
and better-quality goods or services.

2.4.6 Environment

By deploying environmental sensors, we can measure and monitor air quality, water
quality, soil conditions, radiation, and hazardous chemicals more efficiently. We can

Introduction to the Internet of Things (loT) | 29

Mechanization, Mass produFtlon, Computerand Cyber Physical
water power, steam assembly line, .
L. automation Systems
power electricity

Figure 2.3 Four Industrial Revolutions. (Source: https://commons.wikimedia.org/wiki/
Category:Industry_4.0#/media/File:Industry_4.0.png)

also predict earthquakes and tsunamis better, and detect forest fire, snow avalanches,
landslides quicker. All these will help us to protect our environment better. By tagging
wild animals, especially endangered species, we can study and understand better the
behavior of the animals, and therefore provide better protections and safer habitats.
The IoT will also enable smart farming, which will provide 24/7 visibility into soil and
crop health, and help farmers to optimize the usage of fertilizers and plant protection
products. This will again inevitably have a positive impact on environment.

2.5 Summary

This chapter introduces the concept of the Internet of Things (IoT), explains how IoT
works, and how IoT will change the way we live. It also introduces some potential IoT
applications.

2.6 Chapter Review Questions

Q2.1 What is the Internet of Things (IoT)?

Q2.2 How does IoT works?

Q2.3 What are potential IoT applications?

Q2.4 What is Industry 4.0?

https://commons.wikimedia.org/wiki/Category:Industry_4.0#/media/File:Industry_4.0.png
https://commons.wikimedia.org/wiki/Category:Industry_4.0#/media/File:Industry_4.0.png

3

loT Enabling Technologies

Tell me and I forget, teach me and I may remember, involve me and I learn.
- Benjamin Franklin

3.1 Sensors and Actuators

A sensor is a device that converts a physical parameter to an electrical output. A sensor
is a type of transducer. Sensors can be divided into analog sensors and digital sensors.
Analog sensors give output in the format of voltages and currents. Microntrollers will
need ADC (analog-to-digital converter) to read in the data from analog sensors. Many
newer sensors are digital sensors, i.e., they give output in digital format, using protocols
such as I2C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface), and UART (uni-
versal asynchronous receiver/transmitter) etc. Digital sensors are excellent for embed-
ded systems, as they bypass the need for ADC, and make the circuit much simpler.
Examples include temperature sensors, humidity sensors, pressure sensors, smoke sen-
sors, sound and light sensors, etc.

An actuator is a device that converts an electrical signal to a physical output, i.e.,
motion. An actuator can be controlled by electric voltage or current, pneumatic or
hydraulic pressure, or even human power. In embedded systems, actuators are mainly
controlled by electricity. When the control signal is received, the actuator converts
the electric energy into mechanical motion. Actuators can create a linear motion,
rotary motion or oscillatory motion. Examples of actuators include electric motors,
piezoelectric actuators, pneumatic actuators, step motors, and door lock actua-
tors etc.

3.2 Communications

Apart from conventional communication technologies such as Ethernet, WiFi, and
Bluetooth, there are many other technologies that can be used for communications in
the Internet of Things.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

31

32

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

3.2.1 RFID and NFC (Near-Field Communication)

Radio-frequency identification (RFID) is a technology that can uniquely identify and
track tags attached to objects using radio frequency electromagnetic waves. A RFID
system typically includes a tag, a reader, and an antenna. The reader sends an interro-
gating signal to the tag via the antenna, and the tag responds with its unique informa-
tion. RFID tags can be either active or passive. Active RFID tags have their own power
source and therefore can be read over a long range (up to 100 meters). Passive RFID tags
do not have their own power source. They are powered by the electromagnetic energy
transmitted from the RFID reader. Therefore, they can only be read over a short dis-
tance (<25 m). RFID primarily operate at the following frequency ranges, as shown in
Table 3.1.

Near-field communication (NFC) is a communication technology that operates at the
same frequency (13.56 MHz) as HF RFID. Different from RFID, NFC is based on peer-
to-peer communication, which means that a NFC device can be either a reader or a tag.
This unique ability has made NFC a popular choice for contactless payment, ID cards,
and travel card etc. NFC devices typically communicate within 4 cm (2 in.) of each
other. NFC is now available on most new smart phones. NFC smart phones can be used
for contactless payment, as well as for passing along information (contact info or pho-
tographs) from one smart phone to the other by tapping the two devices together.

https://en.wikipedia.org/wiki/Near_field communication
https://en.wikipedia.org/wiki/Radio-frequency_identification

3.2.2 Bluetooth Low Energy (BLE)

Bluetooth low energy (BLE) is a newer member of the Bluetooth family, based on
Bluetooth 4.0 standards. Similar to classic Bluetooth, BLE also operates in the 2.4 GHz
ISM band, but uses a simpler modulation system. BLE remains in sleep mode constantly

Table 3.1 RFID Frequency Bands.

Band Range Data Speed Tags

Low frequency (LF): 10 m low passive
125-134.2 kHz

High frequency (HF): 10 cm-1m low to moderate passive

13.56 MHz

Ultra high frequency (UHF): 1-100 m moderate passive or active
433 MHz

Ultra high frequency (UHF): 1-12m moderate to high passive or active
856 MHz-960 MHz

Microwave: 1-2m high active

2.45-5.8 GHz

Microwave: <200 m high active

3.1-10 GHz

https://en.wikipedia.org/wiki/Near_field_communication
https://en.wikipedia.org/wiki/Radio-frequency_identification

loT Enabling Technologies

except for when a connection is initiated, and it therefore consumes much less power.
BLE hit the market in 2011, and is marketed as Bluetooth Smart. BLE is designed to
provide much reduced power consumption and cost while maintaining a similar com-
munication range. BLE typically operates at a range about 100 m, with a data rate about
1 Mbits/s.

Following are the typical BLE applications:

Heart rate monitors

Blood pressure monitors

Blood glucose monitors

Fibit-like devices

Industrial monitoring sensors

Geography-based, targeted promotions (iBeacon)
Proximity sensing

https://www.bluetooth.com/

3.2.3 LiFi

Light Fidelity (LiFi) is a novel, wireless, bidirectional, high-speed communication
technology based on rapidly modulated visible light. It is a type of Visible Light
Communications (VLC) system. Similar to WiFi, LiFi transmits data using electromag-
netic waves. But instead of using radio waves (MHz — GHz), it uses visible light (~THz).
LiFi uses household LED (light emitting diodes) light bulbs as transmitters. By varying
the electric current supplied to a LED light bulb at extremely high speeds, data can be
encoded as the rapid brightness changes, which can then be picked up by a photo-
detector (photodiode). These rapid changes are too quick to be noticed to human eyes;
therefore, LiFi does not affect the main function of LED lights—lighting. LiFi has a huge
advantage in term of infrastructure, as LED light bulbs are increasingly used in build-
ings, streets, and vehicles. It can operate at an impressive speed of up to 224 gigabits per
second, and it is insensitive to electromagnetic interference. LiFi cannot penetrate
walls, which means it can only operate at a short range, but at the same time, this makes
it less likely to be hacked. There are already products on the market that can provide
light and connectivity at the same time.

http://purelifi.com/

3.2.4 6LowPAN

6LoWPAN stands for IPv6 (Internet Protocol Version 6) over Low power Wireless
Personal Area Networks (WPAN). It is a basically a low-power, low data rate, wireless
mesh network based on IEEE 802.15.4 standards, using IPv6 as the communication
protocol. Comparing with other local area networks, 6LoWPAN has a distinct advan-
tage, i.e., it is based TCP/IP open standards, including TCP, UDP, HTTP, COAP, MQTT,
and websockets etc. It has end-to-end IPv6 addressable nodes, and can be easily con-
nected to the Internet directly. It is also self-healing because of mesh routing. 6LoWPAN
has been used in wireless sensor networks, lights, and meters.

https://datatracker.ietf.org/wg/6lowpan/charter/

33

https://www.bluetooth.com
http://purelifi.com
https://datatracker.ietf.org/wg/6lowpan/charter/

34

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

3.2.5 ZigBee

ZigBee is a high-level communication technology for low-power, low-data-rate per-
sonal area networks, such as sensor networks, home automations, and medical
devices. ZigBee is based on IEEE 802.15.4 standard. It has a transmission distance of
10-100 meters and needs to be line of sight. It operates in the industrial, scientific,
and medical (ISM) radio bands, i.e., 868 MHz in Europe, 915 MHz in the United States
and Australia, 784 MHz in China, and 2.4 GHz in the rest of the world. ZigBee has a
data rate ranging from 20 kbit/s (868 MHz band) to 250 kbit/s (2.4 GHz band). ZigBee
networks are normally cheaper than other wireless networks such as Bluetooth or
WiFi. ZigBee has been used for wireless light switches, electrical meters (smart grid,
demand response, etc.), and industrial equipment monitoring etc.

So what is the difference between ZigBee and 6LoWPAN? Well, ZigBee has been
around longer, and therefore has been adopted more widely than 6LoWPAN. ZigBee is
no doubt still the most popular low-cost, low-power wireless mesh networking stand-
ard available today. However, 6LoWPAN is catching up and becoming more attractive,
since it is IP-based, particularly with IPv6 support. This makes it easier to integrate
with the rest of the Internet. To date, many semiconductor companies (e.g., Texas
Instruments, Freescale, and Atmel etc.) are making 802.15.4 chips that support both
ZigBee and 6LoWPAN.

http://www.zigbee.org/

3.2.6 Z-Wave

Z-Wave is a wireless communication technology that is primarily used for home auto-
mation, such as controlling and automating lights and appliances. It can be used as a
security system or to monitor and control your property remotely. Z-Wave operates at
unlicensed industrial, scientific, and medical (ISM) band, i.e., 868.42 MHz in Europe,
908.42 MHz in the United States and Canada, and other frequencies in other regions.
Z-Wave is designed to provide reliable, low-latency transmission at a range of about
100 meters, with data rates up to 100 kbit/s. A Z-Wave network normally includes a
primary controller and a collection of devices (up to 232).

http://www.z-wave.com/

3.2.7 LoRa

LoRa is a long-range communication technology that is intended for low-power, long-
distance communications of battery powered IoT devices—that is, low-power wide area
network (LPWAN). It supports secure bidirectional communications of networks with
millions and millions of devices.

https://www.lora-alliance.org/

Table 3.2 gives a quick comparison of different wireless communication technologies.
LiFi and WiFi potentially offer the highest data rates, while cellular and LoRa offer the
longest distances.

http://www.zigbee.org
http://www.z-wave.com
https://www.lora-alliance.org

Table 3.2 Comparison of Different Technologies.

loT Enabling Technologies

Standard Frequency Range Data Rate
LiFi Similar to 802.11 400-800 THz <10 m <224 Gbps
WiFi 802.11a/b/g/n/ac 2.4 GHz and 5 GHz ~50 m <1 Gbps
Cellular GSM/GPRS/EDGE 900, 1800, 1900, and <200 km <500 kps (2G),
(2G), UMTS/HSPA 2100 MHz <2 Mbps (3G),
(3G), LTE (4G), 5G 2.3,2.6, 5.25, 26.4, and <10 Mbps (4G)
58.68 GHz <100 Mbps (5G)
Bluetooth Bluetooth 4.2 2.4 GHz 50-150 m 1 Mbps
RFID/NFC ISO/IEC 18000-3 13.56 MHz 10 cm 100-420 kbps
6LowPAN RFC6282 2.4 GHz and ~1 GHz <20 m 20-250 kbps
ZigBee ZigBee 3.0 basedon 2.4 GHz 10-100 m 250 kbps
IEEE802.15.4
Z-Wave Z-Wave Alliance 868.42 MHz and <100 m <100 kbps
ZAD12837 / ITU-T 908.42 MHz
G.9959
LoRa LoRaWAN 868 MHz and 915 MHz <15 km 0.3-50 kbps

3.3 Protocols

Protocols, or communication protocols, are a set of rules that allow devices to com-
municate with each other. Protocols define the syntax, semantics, and synchronization
of communication. A close analogy to protocols is human languages. There are many
communication protocols available for IoT applications. Following are commonly used
protocols: HTTP, Websocket, and MQTT.

3.3.1 HTTP

The Hypertext Transfer Protocol (HTTP) is the communication protocol behind the
World Wide Web (WWW). It is based on client—server architecture, and operates in a
request and response fashion (Figure 3.1). HTTP uses TCP (transmission control pro-
tocol) to provide reliable connections. HT TP is stateless, as the client and server do not

HTTP Request

—
HTTP Response
Client Server

Figure 3.1 The HTTP protocol.

35

36

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

maintain a connection during the communication. The current version is HTTP/1.1
and the previous version is HTTP/1.0. The newer version HTTP/2 is coming soon,
which will have many new features, such as server push, to minimize the number of
clients’ requests and increase speed.

Following is an example of HT TP request message:

GET /index.html HTTP/1.1
Host: www.mbed.com
Connection: keep-alive
User-agent: Mozilla/4.0
Accept-language: en

Following is an example of HT TP response message:

HTTP/1.1 200 OK

Server: nginx/1.7.10

Date: Sun, 12 Feb 2017 12:21:57 GMT
Content-Type: text/html
Content-Length: 185

Connection: close

Location: https://www.mbed.com/

<html>
<heads<titles.. .. </titles></head>
<body>
</body>
</html>

3.3.2 WebSocket

WebSocket is a communication protocol designed for web browsers and web servers,
but unlike HTTP, WebSocket provides full-duplex communication over a single TCP
connection. WebSocket is stateful, as the client and server do maintain a connection
during the communication. The WebSocket makes more interaction between a browser
and a web server possible, enables real-time data transfer and streams of messages. To
date, WebSocket is implemented in all major web browsers, e.g., Firefox 6, Safari 6,
Google Chrome 14, Opera 12.10 and Internet Explorer 10.

Following is an example of WebSocket request message:

GET ws://websocket.test.com/ HTTP/1.1
Host: websocket.test.com

Upgrade: websocket

Connection: Upgrade

Origin: http://test.com

loT Enabling Technologies
Following is an example of WebSocket response message:

HTTP/1.1 101 WebSocket Protocol Handshake
Date: Mon, 16 Jan 2017 16:54:12 GMT
Connection: Upgrade

Upgrade: WebSocket

Further Information about WebSocket

https://www.websocket.org/

3.3.3 MQTT

MQ Telemetry Transport (MQTT) is a lightweight, machine-to-machine communica-
tion protocol designed for IoT devices by IBM. MQTT is based on a publisher—
subscriber model, where the publisher publishes data to a server (also called broker),
and the subscriber subscribes to the server and receives data from the server. The
MQTT broker is responsible for distributing messages and can be somewhere in the
Clouds. See Figure 3.2.

For IoT devices, MQTT offers many advantages over HTTP and WebSocket, which
requires a server constantly running, which requires more computing power, more
bandwidth and more energy consumption. They are not purposely designed for IoT
devices, where response times, throughput, lower battery use, and lower bandwidth are
key design criteria. MQTT is purposely design as a “lightweight” messaging protocol,
features faster response and throughput, and lower battery and bandwidth usage.

subscribe Mobile devices

d”
-

-
£ _~"publish

subscribe s A

Computers

publish
O —

= publish ‘! ;

“~ .
~ subscribe
~

\
ﬁ Embedded devices

Publisher MQTT Broker Subscribers

publish

Figure 3.2 The MQTT protocol.

37

https://www.websocket.org

38

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Although MQTT broker also need to be running all the time, but IoT devices (publishers
and subscribers) are lightweight.
MQTT also allows to prioritize messages, such as QoS (Quality of Service):

0: The client/server will deliver the message once, with no confirmation required.
1: The client/server will deliver the message at least once, confirmation required.
2: The client/server will deliver the message exactly once by using a handshake process.

Appendix B has more details on how to download and set up a MQTT broker using
the popular HiveMQ software.

Further Information about MQTT

http://mqtt.org/

http://www.hivemq.com/resources/getting-started/

http://www.hivemq.com/plugin/mqtt-message-log/

http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-
plugin-2-min

http://www.hivemq.com/plugin/file-authentication/

http://www.hivemq.com/demos/websocket-client/

3.3.4 CoAP

The Constrained Application Protocol (CoAP) is a specialized application layer proto-
col for constrained IoT devices, i.e., devices with limited computing power, power con-
sumption, and network connectivity, etc. It is based on request and response messages,
similar to HTTP, but it uses UDP (user datagram protocol) rather TCP (transmission
control protocol). Although UDP does not provide reliable transmissions, it is much
simpler, has much smaller overhead, and hence it is much faster. CoAP is designed for
machine-to-machine (M2M) applications such as smart energy and home / building
automation.

Further Information about CoAP

http://coap.technology/
https://tools.ietf.org/html/rfc7252

3.3.5 XMPP

Extensible Messaging and Presence Protocol (XMPP) is an open standard, real-time
communication protocol based on XML (Extensible Markup Language). It can provide a
wide range of services including instant messaging, presence and collaboration. It is
decentralized and has security features. It is also extensible, which means it is designed to
grow and accommodate changes. XMPP software includes servers, clients, and libraries.

Further Information about XMPP

https://xmpp.org/

http://mqtt.org
http://www.hivemq.com/resources/getting-started/
http://www.hivemq.com/plugin/mqtt-message-log/
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/plugin/file-authentication/
http://www.hivemq.com/demos/websocket-client/
http://coap.technology
https://tools.ietf.org/html/rfc7252
https://xmpp.org

loT Enabling Technologies

3.4 Node-RED

Node-RED is a web-based open source software tool developed by IBM, which can be used
to connect hardware devices over the Internet. Figure 3.3 shows the Node-RED homepage.
For example, with Node-RED, you can connect your mbed development board to the
Internet, read the sensor values, display it in a chart, in a web page, in an email, or a Twitter
message. You can also send commands back to the development board to perform some
control. It is a graphic-based programming tool, which uses functional blocks called nodes
to build the program. All you need to do is to wire up the nodes and configure them. This
makes many programming tasks remarkably simple and easy to implement. Figure 3.4
shows a simple WebSocket-based chat program implemented in Node-RED.

Node-RED is a great tool for IoT projects. It uses JavaScript to create functions, and
allows user to import and export programs using JSON (JavaScript Object Notation),
which is a lightweight open standard for data exchange.

There are many ways of using Node-RED, the most straight forward way is to use
Node-RED from the IBM Watson IoT Platform—Bluemix, as shown in Figure 3.5. More
details are available in Chapter 12.

Alternatively, you can also use Node-RED on Raspberry Pi; see Appendix C for more
details.

Further Information about Node-RED

https://nodered.org/
https://flows.nodered.org/
https://nodered.org/docs/getting-started/first-flow

& & O [8 ecum | hipriincdemdong ot

Node-RED

A visual tool for wiring the Internet of Things

MNode-RED is a tool for wiring together hardware devices, APls and

onfing sorvices in now and intere: E:iﬂg Ways
Getting Started

I you already have Node js installed, run:

% sudo npm install -g node-red
% node-red

You can try it out cn IBM Bluemix, or on SensaTecnic FRED

Latest version: v0.16.2 (npm

Otharwico, hoad over to tho Gotting Startod guids

Figure 3.3 The Node-RED website.

39

https://nodered.org
https://flows.nodered.org
https://nodered.org/docs/getting-started/first-flow

40

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Q Flow 1 Flow 2 Flow 4 LK 1 info debug dashboal

[ws] hrsichat

cateh pwe] wsichal [———
status
=y [gef) ighat | — —_— hip
ity

watsoCket

- output

a Flow 1 Flow 2 Flow 4 + info debug dashbo.

Cevice Simulator

1. Configure farget

= S —— | ot T—::

Piots the input values on a chart. This can

2 Click to send daty
islaia o either bee a time based Ine chart. 3 bar

shder chan (vertical or horizontal), or a pie charl.
L Each input msg.payload vale wil be
converted 10 a number, If the conversion
et inpet tails, the message is ignoned.
Temparature Mentor m Minimum and Masimum ¥ axis values ars
colour picker . optional. The graph will autc-scale to any
T waUeS neceivec.
peuge
SEaure aedres Multipl Bnes can be sHown on Me same

safe . "

form | «chan by using a different msg. topic

CEEE e < e Byg e

= pUl MEssage.
® T danger

ot
The X axis defines a ime window or a
pTm—— ") maximum number of poinks to display.
- | chart - Older data wil be autormatically removed
- — frem the graph. The sds labels can be
formatied using a Moment js time formatied
T T Blank okl fuld can by wsed o
o dispiay some fext before any vald data is
received

The node oulput contains an array of the =

Figure 3.5 A Node-RED program for the Arm® Mbed™ IBM IoT starter kit.

loT Enabling Technologies

3.5 Platforms

IoT platforms connect the sensors and data network to one another, integrating with
backend applications to provide insights using backend applications to make sense of
plethora of data generated by hundreds of sensors. With Iot platforms, you can connect
and monitor your devices and sensors, display and analyze sensor data, control your
devices, and develop software applications for your devices. Following is a list of com-
monly used IoT platforms.

3.5.1 IBM Watson loT—Bluemix (http://www.ibm.com/internet-of-things/)

IBM Watson is a cloud-based computer system that combines artificial intelligence (AI)
and sophisticated analytical software for optimal performance as a “question answer-
ing” machine. IBM Watson also supports IoT applications. The IBM Watson IoT plat-
form Bluemix allows users to build IoP applications quickly, and connect IoT devices
easily and securely. Figure 3.6 shows the schematic diagram of IBM Watson IoT plat-
form from the IBM Watson website. Device-specific SDKs are available for Embedded
C, JavaScript, Python, iOS, Android and Arduino Yun. The Arm® Mbed" FRDM-K64F
development kit used in this book can be easily connected to the IBM Watson IoT
platform. The IBM Water IoT platform also provides real-time insights that contextual-
ize and analyze real-time IoT data.

e - o X
Internet of Things Platic X
C | 8 Secure | https;//console.bluemix.net/catalog/services/internet-of-things-platform | i
5 1BM Cloud ool b Lk
How loT works
REST & Reakime APIS

Figure 3.6 The schematic diagram of IBM Watson loT platform from IBM website. (Source: https://
console.ng.bluemix.net/catalog/services/internet-of-things-platform/)

a4

http://www.ibm.com/internet-of-things/
https://console.ng.bluemix.net/catalog/services/internet-of-things-platform/
https://console.ng.bluemix.net/catalog/services/internet-of-things-platform/

42

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

—

Communication

Field protocols | loT protocols |

Data Management —s Application o
& Messaging — \E = Enablement J—§
]

[

[ﬁuu protocols | T —— |
Network Management E|

2
0

g

Event Management,
Analytics & Ul

Data —F
Management e

2
b
€013
A B
2.
1k
L I

3

Remote
Management

Hardware

Abstraction Layer (HAL) o
Application Runti e
R.gl“q

{I:IE == ¢h

CONSTRAINED DEVICES GATEWAYS AND SMART DEVICES 10T CLOUD PLATFORM

Device

o
qaop
e Management

Remote Management

Figure 3.7 The software stacks of Eclipse loT platform for constrained devices, gateways, and cloud
platforms. (Source: https://iot.eclipse.org/devices/)

3.5.2 Eclipse loT (https://iot.eclipse.org/)

This is an open source platform developed by The Eclipse Foundation. Eclipse IoT pro-
vides the technology needed to build IoT devices, gateways, and cloud platforms. See
Figure 3.7 for the corresponding three software stacks. Eclipse IoT provides open source
implementations of IoT standards and protocols, open-source frameworks and services
that will be used by 10T solutions, and tools for IoT developers.

3.5.3 AWS IoT (https://aws.amazon.com/iot/)

Amazon’s AWS IoT platform provides secure communications between IoT devices
and the AWS. AWS IoT supports HTTP, WebSockets, and MQTT. Figure 3.8 shows
the schematic diagram of Amazon’s AWS IoT platform from the Amazon website. Its
Rules Engine can route messages to AWS endpoints, including AWS Lambda, Amazon
Kinesis, Amazon S3, Amazon Machine Learning, Amazon DynamoDB, Amazon
CloudWatch, and Amazon Elasticsearch Service with built-in Kibana integration. It
can also create a persistent, virtual version, or “shadow,” of each device that includes
the device’s latest state, so that users can interact with devices even when they are
offline.

3.5.4 Microsoft Azure loT Suite (https://azure.microsoft.com/en-us/suites/
iot-suite/)

Microsoft Azure IoT Suite can be easily integrated with your systems and applications,
including Salesforce, SAP, Oracle Database, and Microsoft Dynamics. It packages
together Azure IoT services with preconfigured solutions. Azure IoT Suite supports
HTTP, Advanced Message Queuing Protocol (AMQP), and MQTT. A set of device
SDKs for .NET, JavaScript, Java, C and Python are available. Figure 3.9 shows the sche-
matic diagram of Microsoft Azure IoT solution architecture.

https://iot.eclipse.org
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/suites/iot-suite/
https://azure.microsoft.com/en-us/suites/iot-suite/
https://iot.eclipse.org/devices/

loT Enabling Technologies | 43

@ How the AWS IoT Platior X

< C [@ secure | https://aws.amazon.com/iot-platiom/how- it-works/ |t

Products ~ Selutions g Getting Started More ~ English ~ MyAccount ~ Create an AWS Account

| AWS loT —/« » ug%m @

RULES ENGINE i With these endpoints you can defiver
AB EriEEEE i AUTHENTICATION DEVICE GATEWAY
e

Transform device messages
based on rufes and route to

messages toevery AWS service
&AUT

devices via MQTT,
authentication and encrypion WebSocket

andHITPL

i APPLICATIONS
DEVICE SHADOWS i Applications can connect to
Pesistet e tatedrivg | shads o any tim using an At

intermittent connections

Assign a unique dentty to

e

Figure 3.8 The schematic diagram of Amazon AWS IoT platform from the Amazon website.
(Source: https://aws.amazon.com/iot-platform/how-it-works/)

Data processing and

Device connectivity Presentation

analytics

Presentation and business connectivity

|P-capable
devices

loT client

=
=
ExistingleT [, E
| & IoT solution backend
-
| =
_—— | Gateway o
j | O
Low-power I :4—-
dezces i :

—# Data path

]
I__ | Optional solution component

- loT solution component

Figure 3.9 The schematic diagram of Microsoft Azure loT solution architecture. (Source: https://docs.
microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-azure-iot)

https://aws.amazon.com/iot-platform/how-it-works/
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot

44| Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

) Google Cloud Platform

Cloud

Storage

O ﬂ ot
= Datastore

Cloud

BigTable
App
Engine

Sloud Cloud
Pub/Sub e o
Cloud

Monitoring

ontainer
Cloud

Gateway Dataflow

0|
E S

Compute
Logging

Engine

00O
co00¢

BigQuery

Cloud
Dataproc

Cloud
Datalab

2000: 000

Figure 3.10 The schematic diagram of Google Cloud loT platform. (Source: https://cloud.google.com/
solutions/iot-overview)

3.5.5 Google Cloud loT (https://cloud.google.com/solutions/iot/)

Google Cloud IoT takes advantage of Google’s heritage of web-scale processing, ana-
lytics, and machine intelligence. It utilizes Google’s global fiber network (70 points of
presence across 33 countries) for ultra-low latency. Software libraries are available
for Go, Java (Android), .NET, JavaScript, Objective-C (iOS), PHP, Python and Ruby.
Figure 3.10 the schematic diagram of Google Cloud IoT platform.

3.5.6 ThingWorx (https://www.thingworx.com/)

ThingWorx is a complete development platform for the Internet of Things. Thing-
Worx enables powerful, enterprise IoT solutions. Its Coldlight software can provide
automated predictive analytics, as well as other IoT analytics. It also features Aug-
mented Reality Integration (Vuforia Studio Enterprise), Edge Microserver, and
“Always On” SDK.

3.5.7 GE Predix (https://www.predix.com/)

GE Predix platform supports over 60 regulatory frameworks worldwide. It is based on
Pivotal Cloud Foundry, and provides many Predix Services.

3.5.8 Xively (https://www.xively.com/)

Xively supports connections using native MQTT and WebSockets MQTT. It provides a
C client library for use on devices. Xively provides an application for integrating con-
nected products into the Salesforce Service Cloud.

https://cloud.google.com/solutions/iot/
https://www.thingworx.com
https://www.predix.com
https://www.xively.com
https://cloud.google.com/solutions/iot-overview
https://cloud.google.com/solutions/iot-overview

loT Enabling Technologies

3.5.9 macchina.io (https://macchina.io/)

This is an open-source-based IoT platform that implements a web-enabled, modular,
and extensible JavaScript and C++ runtime environment. It is based on the POCO C++
Libraries and the V8 JavaScript engine. It is also based on a powerful plug-in and ser-
vices model. It includes HTTP(S) and MQTT clients and SQLite as its embedded
database.

3.5.10 Carriots (https://www.carriots.com/)

This platform provides integrations with Arduino, Raspberry Pi, and other DIY hard-
ware platforms
It uses its HTTP RESTful API to push and pull XML or JSON encoded data. It deploys

and scales from tiny prototypes to thousands of devices.
3.6 Summary
This chapter introduces the IoT enabling technologies, including sensors and actuators,
communications, protocols, and various of IoT platforms.
3.7 Chapter Review Questions

Q3.1 What are sensors and actuators?

Q3.2 Whatis BLE?

Q3.3 How does LiFi work?

Q3.4 What is 6LowPAN?

Q3.5 What is Arm® Mbed"?

Q3.6 What is WebSocket?

Q3.7 What is WebSocket?

Q3.8 Whatis MQTT?

Q3.9 What is Node-RED?

Q3.10 What are [oT platforms?

45

https://macchina.io
https://www.carriots.com

Part Il

Arm® Mbed"" Development

In this Part:

Chapter 4: Getting Started with Arm® Mbed ™

Chapter 5: Inputs and Outputs

Chapter 6: Digital Interfaces

Chapter 7: Networking and Communications

Chapter 8: Digital Signal Processing and Control

Chapter 9: Debugging, Timer, Multithreading, and Real-Time Programming
Chapter 10: Libraries and Projects

47

49

4

Getting Started with Arm® Mbed ™

Success consists of going from failure to failure without loss of enthusiasm.
- Winston Churchill

4.1 Introduction

The current version of Arm® Mbed"" OS (operating system) is version 5.7. As shown in
the Arm® Mbed"" documentation website (https://os.mbed.com/docs) (Figure 4.1). You
can have three ways to get started with Arm® Mbed " development.

e Online compiler
e Command line interface (mbed CLI)
e Third-party development environment

The easiest and quickest way is Arm® Mbed"™ online compiler, e.g., the web-based
compiler (https://os.mbed.com/docs/v5.6/tools/arm-mbed-online-compilerhtml). This
is what this book is focused on.

For the Arm® Mbed"™ CLI, you will need to download and install the Arm® Mbed "™ CLI
software (https://os.mbed.com/docs/v5.6/tools/mbed-cli.html). It takes some effort, but
the advantage is that it can work offline—that is, without Internet connection!

There are also a lot of third-party development environments available, including Keil
uVision, DS-5, LPCXpresso, GCC, IAR Systems, and Kinetic Design Studio. More
details can be found at https://os.mbed.com/docs/v5.6/tools/exporting.html

For more details:

https://os.mbed.com/
https://os.mbed.com/docs/v5.6/tools/index.html

4.2 Hardware and Software Required

4.2.1 Hardware
To get started, you will need:

e The Arm® Mbed"™ Ethernet 10T Starter Kit, which includes an mbed Freedom
FRDM-K64F development board and mbed application shield.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

https://os.mbed.com/docs
https://os.mbed.com/docs/v5.6/tools/arm-mbed-online-compiler.html
https://os.mbed.com/docs/v5.6/tools/mbed-cli.html
https://os.mbed.com/docs/v5.6/tools/exporting.html
https://os.mbed.com
https://os.mbed.com/docs/v5.6/tools/index.html

™

50 | Designing Embedded Systems and the Internet of Things (oT) with the ARM® Mbed

W Pesieambedcomyid: X

€ 5 C [8 secure | Mipsjosmbedeom Q% 3

MBED

oS

Introduction

Introduding Mbed OS; the overview, architecture, features and licensing

— :
o {}

Reference Tools Tutorials
anual for Mbed OF: APls, Details of the tools available for working with Learn about workil i
d implementa details Mbed 05 started, develo

pattems, del

Figure 4.1 The Arm® Mbed"™ documentation website.

e Micro USB cable
e Breadboard with jumper wires

4.2.2 Software

Although you don’t need any software to compile and run your application on the Arm®
Mbed™ devices when you are using an online compiler, you do need some software to
communicate with the devices. Depending on your computer, you might need to install
serial port driver and Terminal software.

Serial Port Driver
When you connect your mbed device to your computer, it can appear as a serial port,
also called a virtual COM port. On Mac and Linux, this will happen automatically. For
Windows, you need to install a serial port driver.

Just go to the following Windows Serial Configuration web page (see Figure 4.2) and
follow the instructions to download and install the serial port driver.

https://os.mbed.com/handbook/Windows-serial-configuration

Terminal Software

You will also need to install terminal software, through which you can receive and send
data to your mbed device. Just go to the following Arm® Mbed" “Terminals” website
(see Figure 4.3), and follow the instructions to download and install terminal software.

https://0s.mbed.com/handbook/Terminals

https://os.mbed.com/handbook/Windows-serial-configuration
https://os.mbed.com/handbook/Terminals

Getting Started with Arm® Mbed™ | 51

e - o x
W Windows seral configer: %
- © | Secure | DOpsy0smBLOGM, Tandbook, Window: condiguration @
arm mBeep Mbed 05 MbedCloud Partner Portal Search._ Q
05 Home Hardware« Code Documentation + Questions Forum m Log In/Signup
Handbook » Windows serial configuration
. : " Recent changes
S 5 our,
Windows serial configuration P
A Mbed 052 and Mbed 05 5 @ Table of Contents Firmware FROM K64F
This is the handbook for Mbed OS5 2. If you're working with Mbed OS5, ph th 1. 1. Download the W o KA Firmwane
handbook. For the | Sartal ok The Windows Serial Driver, mbed Windows serial
3 [;’; "':;'"'_ - uvision ulink2 and mcb1700
un the installer
The mbed serial port works by default on Mac and Linux, but Windows needs a driver, These ;
instructions explain how to setup the mbed Microcontroller touse the USE serial port on e
Windows. W modem , Serint , USB
promafavnet Ipcliv24 plus
1. Download the mbed Windows serial port driver baseboard
W wmet . LPCIIU24 . mX .
Download the installer to your PC. e.8. your desktop. NGX , promation
Dewnload latest driver mbed ook
- mbed interface
2.Runtheinstaller o (o (i

Figure 4.2 The Windows Serial Configuration website.

a ol o *
B Teminals - Mandbock || %
L © | @ Secwe | hitpsyosmbed.oom, handtook; Terminals eIl
arm mMBep MbedO5 MbedCloud Partner Portal Search. Qa

05 Home Hardware~ Code Documentation» Questions Forum Log In/Signup

Handbook » Terminals

) Recent changes
g
Terminals Firmware FRDM K22F
A Mbed OS5 2 and Mbed 05 5 © Tableof Contents Firmware FROM K64F
Thisisthe shook for Mbed 05 2. i " Mhed 055 o e 1 Terminal Applcations W e, MESF-Firmmwire
Forthel " g the mast out of 2 Windows users
the USB connection. 4 Mac/Linux Users uvision ulink2 and mcb1700

sprint
W modem . Spent . USE

Terminal Applications
promo/favnet ipc11u24 plus

Terminal applicati on your host 2C, ide a window for your mbed Microcontroller to print to, and a means for baseboard
you to type characters back to your mbed Microcontraller.

W awet . LPCIIUZ4 , mX ,
@ Serial configuration NGX . promotion
The standard setup for the USB Serial Port is #500 baud, 8 bits, 1 stop bit. noparity (aka $600-8-N-1) mbed tools

mbed interface

Windowes 11sers W inetace . mbed I

Figure 4.3 The Arm® Mbed™ Terminals website.

There are several popular terminal software available. In this book, the majority of the
examples are based on Tera Term terminal software (http://sourceforge.jp/projects/
ttssh2/files) in the Microsoft Windows environments, as Tera Term terminal software
can automatically recognize which serial port that your mbed FRDM-K64F develop-
ment board is connected to (Figure 4.4).

http://sourceforge.jp/projects/ttssh2/files
http://sourceforge.jp/projects/ttssh2/files

52

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

From “Tera Term” software menu “Setup” select “Serial Port...” Then configure serial
port using the standard setup: 9600 baud, 8 bits, 1 stop bit, no parity (9600-8-N-1); see

Figure 4.5 (top).

™

O TCPAIP

Tera Term: Mew connection

x
myhost.example.com
History
Telnet 2
SSH S5H2
Other
UNSPEC

Port: COMY. mbed Serial Port [COMT7]

Cancel Help

Figure 4.4 The Tera Term new connection window.

8. COMT - Tera Term VT — O x Tera Term: Serial port setup X
File Edit | Setup Control Window Help

Window... Baud rate: 9600 ~

Font...

Keyboard... Data: 8 bit v Cancel

Serial port... Parity: none -

Proxy...

s Stop: 1 bit v Help

SSH Authentication... Flow contral: none ~

SSH Forwarding...

S5H KeyGenerator... Transmit delay

TCP/IP... .

. : El msecichar El msecfline

eneral...

Additional settings...
8 COMT - Tera Term VT - [m] b4 Tera Term: Terminal setup x
File Ecit | Setup | Control Window Help . . i

Terminal size New-line

Window.. X Receive: CR ~

Eonts Term size = win size Transmit: cR+LF Cancel

Keyboard... q "

i Auto window resize

Serial

erial port. Help

Proxy... Terminal ID: VT100 ~ [J Local echo

SSH...

SSH Authentication... Answerback: l:l [] Auto switch [WT<->TEK])

S5H Forwarding...
SSH KeyGenerator...
TCP/IP...

General...

Additional settings...

Coding [receive]
UTF-8

locale: [american

Coding [trans mit]
UTF8 -

CodePage:

Figure 4.5 The Tera Term Serial port configuration (top) and Terminal configuration (bottom).

Getting Started with Arm® Mbed™

By default, Tera Term only transmits “\r” (CR, carriage return) when you press the
“Enter” key. It is better to configure it to transmit a “\n” (NL, new line) as well, then the
Arm® Mbed™ Serial read function “gets()” should terminate once it receives the “\n”
See Chapter 7, section 7.1 for more about serial communications.

To configure the transmission, from “Tera Term” software menu “Setup” select
“Terminal...”. Then configure “Transmit:” as “CR+NL”"; see Figure 4.5 (bottom).

Other popular terminal software

Putty.exe: https://the.earth.]i/~sgtatham/putty/latest/w32/putty.exe
Arduino Serial Monitor: https://www.arduino.cc/en/main/software

4.3 Your First Program: Blinky LED

4.3.1 Connect the Mbed to a PC

Connect the Arm® Mbed " FRDM-K64F development board to a computer using micro
USB cable, there are two micro USB port on the board, make you are using the one on
the right side, next to the “Reset” button (Figure 4.6). It will then appear as a standard
USB memory drive, in this case, it is in drive G.

4.3.2 Click”“mbed.htm”to Log In

Double-click the file “mbed.htm”—your web browser will then open a Login / Signup
page (Figure 4.7). If you have an account, just log in; if you don’t have an account, just
sign up by following the instructions.

=LA T MBED (G) - =
“ Home Share View Manage [-]
m L — 3 HH setect an
0 B F Select none
py Paste _ T Rename = New Properties
5] S o v o Invert selection
T e+ ThisPC » MBED (61 v| ¢ | searchmBeD.. p
Fovortes Mame ° Date modified
<) mbed 14/12/2012 13:52
¥, Homegroup
18 This PC
W Desktop
Documents
& Downloads
Y Music
£ Pictures
& Videos
i, WindowsB_05 (C)
s LENOVO (D)
= MBED (G)
@i Network
< >
1item =

Figure 4.6 The FRDM-K64F board and the Arm® Mbed™ USB drive (G:) window.

53

https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe
https://www.arduino.cc/en/main/software

54

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

a - o x
W Lopinor Sigrap | Moed X
€ [Secure | hitpsi/oambed.com .-
Qrm mBeD Mbed OS5 MbedCloud Partner Portal Sk Q
05 Home Hardware~ Code Documentation» Questions Forum | Compiler Log In/Signup

Loginor Signup

Login Signup

Username:

Remember me

Figure 4.7 The Arm® Mbed" Login / Signup window.

Alternatively, you can also go the mbed developer website, https://os.mbed.com/, and
click the “Compiler” menu on the top.

4.3.3 Add the FRDM-K64F Platform to Your Compiler

After login, you will be redirected to FRDM-K64F development board home page,
which has all the details of the device (Figure 4.8). Click “Add to your mbed Compiler*
button on the right-hand side. This will add the FRDM-K64F development board
platform into your compiler, so that you can start writing code for the device. Each
Arm® Mbed™ development board is a platform, so you will need to add different
platforms for different mbed development board.

4.3.4 Import an Existing Program

Further down the page, there is an “Open existing Project” section (Figure 4.9). Click
“Import Program” button to import the existing “mbed_blinky” project into your
compiler.

The default project name is “mbed_blinky” (Figure 4.10), but you can change it to any
name you prefer. Click the “Import” button, which will bring you to the online compiler
web page.

Figure 4.11 shows the program online compiler web page. The “main.cpp” is the main
C++ file that defines what your program is going to do. In this example, in the “main.
cpp” file, it first includes the “mbed.h” header file, then defines LED1 as the digital
output. In the “main()” function, it uses a “while” loop to switch the LED1 on, wait for
0.2 second, then switch the LED1 off, and wait another 0.2 seconds.

https://os.mbed.com

-

T otisonsl 164 e

W tmena of smnerkn |- x) [ROU-AE | tea

Getting Started with Arm® Mbed™ | 55

c

developer.mbed.org/platiorms,
FRDM-K64F

The Freecom-KiLF is sn ultra-ow-cost developmient platforms for Kinetis K64, KE3, and K24 MCUS.

The Flagehip FROM-KESF has betn designed by NP in collaboration with mbed Sor prototyping b
5ets of devices. especially those requiring optimired size and price poines. The board s wed sized
For connected applcat

Overview

3 development ool o
& deveicpment board it
nciuades & builtdn LIS Debug

s hadders compatibie with &rduing &3 shislds an
Programmes.

ROl Wik b T FRON-OE Sy e

Ta compile & program for this -
board, Lrce Gaf a the target]
name

Board Partner

0 Table of Contents

W RO e %
€2 Q0

FRDM-K64F

e mbed.com/platic

Device Crystal-less and Sexial). The Kinetis K&4 MCU family remains fully software, hardware
4 | ibi

packaged as
shields and includes a built-in USB Debug and Flash Programmer.

Kinetis MCL and F

d families. It is
board includi i

ArduinoR3

To compile a program for this
boand using Mbed CLI, use
KBAF 25 the target name.

The Freedom-K64F is an ultra-low- Kinetis K64, K3, and K24 MCUs.
Board Partner
O X @ Table of Contents NXPis aleading semiconductor
verview : company founded by Philips more
e e 1 Overview than 50 years ago.

2. MCU Features
The Flagship FROM-K64F has been designed by NXP in collaboration with mbed for 3. Board Featines
prototyping all sorts of devices, especially those requiring optimized size and price points. The 4, Board Block Diagram = - -
board is well sized for connected appiications, thanks Lo its power efficient Kinetis K64F MCU 5. Board Pinout © Add ta your Mbad Complier
featuring an ARME Cortex®-M4 ing 120MHz bedding 1024KEB Flash, & PC Configuration - ~
258KE RAM and lots of peripherals (16-bit ADCs. DAC, Timers) and interfaces (Ethernet. USB 7. Firmware Update W By Now

8 Get Started with

mibed
9. Flash a project binary Mbed Enabled
10. Open existing Project 0 rm Mhad 057 =

Figure 4.8 The FRDM-K64F development board home page.

Rk b S S O O

//Example 4.1

#include

DigitalOut myled (LED1) ;

int

}

"mbed.h"

main () {

while (1)
myled =
wait (0
myled = 0;
walit (0.2) ;

//include mbed.h header
//define LED1 as digital output

//main function

// while loop
//switch LED1 off
//wait 0.2 seconds
//switch LED1 on

// wait 0.2 seconds

Rk bk S O S

56 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

W DMK Mbed X
€ 9 C | @ nipsjosmbed.com/plationms/FROM-K64F LRI

Open existing Project

1. Import the Program to your mbed compiler
Select Import As Pragram

Choose Import Name of your preference

Click on Import

©mbed_blinky

The example program for mbed pin-compatible platforms [

Last commit 12 Oct 2017 by Mbed

2. Compile the Program

In the right panel Program Workspace Select the program you want to compile
Click on Compilein toolbar
If compilation ends successfully, you should see the comment Success!displayed in the Compile Output window available in

i Ly " Iy the py iled binary for the program.

3. Download a (.bin) to the FRDM Platform |

Figure 4.9 The Open existing Project section in FRDM-K64F development board home page.

W FROM-G5F MEed 3 ;] Mbed Compir Worksp: X

€ 5 C | # Secure | Mips/ionmbeasom com ik ra,

Tmpost Program
1Mot 3 prEgram rem of MEd Com nto YOur AIEERICE.

Figure 4.10 The Import Program pop-up window.

FRDM-K64D has only one RGB LED, LED1 (also called LED_RED) here refers to the
red color of RGB LED. Similarly, LED2 (or LED_GREEN) and LED3 (or LED_BLUE)

refer to green and blue colors.

Getting Started with Arm® Mbed™ | 57

a - o x
|] A-KE4F | Mbed B Mbed Compiar fmtn
€ © | # Secure | Mps//onmbed.com . . o 1|
Mbed /mbed_blinky/main.cpp
P hew v B Import ave Al | %] Compile w | @ Commit v (0 Rewision | « | 04| & | N | (Hep FROM-KE4F 4
Program Workspace <) mein.cpp %
7 my Programs firclu
(@ mbed binky
e | main.cpp
o mbed
Compile output for program: mbed_blinky Verbose Errors: 0 Wamings: 0 Infos: 0
Desciption Error Number | Resource In Folder Loca
< >

Figure 4.11 The “mbed_blinky” program online compiler web page.

4.3.5 Compile, Download, and Run Your Program

Click the “Compile” button to compile the program. If successful, a file called
“mbed_blinky_K64F.bin” will be created and downloaded to the default download
folder. Copy the file to FRDM-F64K USB drive and press the reset button to run your
program! Now you should see the red LED blinking!

4.3.6 What Next?

Congratulations! You have just successfully run your first program. Next, you can try to
download and run other existing programs from:

https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/

You can also create your own programs.

4.4 Create Your Own Program

From your online compiler, you can create a new program by clicking the “New”
button. A “Create new program” pop-up window will appear (Figure 4.12). Make sure
you select the right platform (FRDM-K64F) and right template. I have found both
“gpio example for the Freescale freedom platform” and “mbed OS Blinky LED
Helloworld!” are good templates to start with. You can then easily modify the code to
do what you want to do.

https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/

58 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

W FOM-sE (Mbed x| [E] Mbed Compiar fmbed, X

< C | @ Secure | Mips/fosmbeccom; compikes ruv/mEsd_blinky/maincpp

Create new program

Create new program for "FRDM-K64F "
This will create a new C++ program for "FROM-K54F " in your
= change the platform of this program

The name of the program to be created in your
workspace

¥ Update this program and libraries to latest revision

Figure 4.12 The Create new program pop-up window.

4.5 C/C++ Programming Language

The Arm® Mbed" program uses C++ programming language. This is different from
C programming language, which was originally developed by Dennis Ritchie for
UNIX operating systems at “AT&T’s Bell Laboratory” of USA back in the 1970s. C is
a low-level powerful programming language, but it lacks many modern features.
C++ is a newer language based on C, developed by Bjarne Stroustrup, also at Bell
Laboratory in the 1980s. C++ has many features, such as easier memory manage-
ment and object-oriented programming. All the functions in C are also available
in C++.

4.6 Functions and Modular Programming

When you write simple programs, you can just put all the code inside the “int main()”
function, as shown in Example 4.1. However, when your program is getting longer and
complex, it is better to separate some of the reusable code into functions. Functions are
also called subroutines, procedures or methods. With functions, you can easily reuse
the code, and make the “int main()” function much simpler—hence, reducing the pro-
gramming complexity.

Following is a simple function example. It does exactly the same as Example 4.1, but
uses a functions called “void flashled(double t)” to flash the LED every ¢ seconds.

Getting Started with Arm® Mbed™ | 59

Rk b S b S O I S S O R S S

// Example 4.2
#include "mbed.h"

DigitalOut myled (LED1) ;

void flashled(double t) {
myled = 1;
walit (t) ;
myled = 0;
walit (t) ;

}

int main()

while (1)

flashled(0.2) ;

}

Rk b S S S O I S S S R S S

You can also put the “void flashled(double t)” function after the “int main()” function,
as shown in Example 4.3. In that case, you will need to declare the functions in the
beginning, before the “int main()” function. The declaration statements for functions
are called prototypes.

Rk b S S S O I S R S S

// Example 4.3
#include "mbed.h"

DigitalOut myled (LED1) ;
void flashled(double t);

int main()
while (1)
flashled(0.2) ;

}

void flashled(double t) {
myled = 1;
walt (t) ;
myled = 0;
walt (t) ;

}

Rk b S S S O I O R S S

60

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

-] - o X
B FRDM-K54F | Mbed %/ [E Mbed Compiler FIDM- %
L | @ Secure | Mtpe//osmbed.com ori WA-KELF -Fla ® el i
Mbed /FRDM-K64F-Flashled/Flashled.cpp
Pynew v B import | o save) Save Al | (] compile v | @ Commit v (D Revision |« o | @b | B2 | N | [Hep FROM-KEAF 4
ok €) [meincpp x | [+] Flashiedh x | [£) Flashled.cpp x
'—'E My Programs 4.4 flashled.cpp
= [FRDM-K64F-Flashled
& Flashled.cpp *
[x] Flashled.h B N N —
) F: DigitalOut myled(LED1);
£ main.cpp
(g mbed
‘Compile output for program: FRDM-K64F-Flashled Verbose | Erars:O | Wamings: 0 Infos: 0
Desaiption Error Number | Resource In Folder Loca
< >

Figure 4.13 The program with “main.cpp, “flashled.cpp,” and “flashled.h” files.

Exercise 4.1

Add an extra input variable to the “void flashled(double t)” function, so that it becomes
“void flashled(int n, double t)” and it blinks different LED depending on the input
value 7.

For large projects, you can also separate code into different files. This is called modu-
lar programming. The following example separates the flash led functions into “flash-
led.cpp” and “flashled.h” files, as shown in Figure 4.13. You can add a new file from the
online compiler by right-clicking your program and select “New File...” The header file,
i.e., “*h” file, is mainly for declarations, such as compiler directives, variable declara-
tions and function prototypes. The “cpp” file is for implementing the functions. In this
case, the header file “flashled.h” is used to join multiple files together.

Rk b Ik S R R kR R R o R R R Rk

// Example 4.4 main.cpp
#include "flashled.h"

int main() {
while (1) {
flashled(0.2) ;

}

Rk bk I R R kR R R R R Rk

Getting Started with Arm® Mbed™ | 61

Rk b S b S O I S S O R S S

//Example 4.4 flashled.h

#ifndef FLASHLED H
#define FLASHLED H

#include "mbed.h"
void flashled (double t) ;

#endif

Rk b S S S O I S S R S S

Rk b S S S O I S S R S S

// Example 4.4 flashled.cpp
#include "flashled.h"
DigitalOut myled (LED1) ;

void flashled(double t) {

myled = 1;
walit (t) ;
myled = 0O;
walit (t) ;

Rk b S S S O I O R S S

Exercise 4.2

Add an extra input variable to the “void flashled(double t)” function so that it becomes
“void flashled(int n, double t)” and it blinks different LED, depending on the input
value 7.

Further Information about Functions and Modular Programming

https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_modular_design.pdf

4.7 Manage Platforms

From your online compiler, you can select your platform by clicking the platform icon
on the top-right corner. From the pop-up window (Figure 4.14), you can get the full
technical details of the FRDM-K64F development board and its pin layout. You can also
select a different platform or add more platforms.

https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_modular_design.pdf

62 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

But to remove a platform, you will need to go back to the Arm® Mbed™ development
board web page and click the “Remove” button on the left-hand side of the page
(Figure 4.15).

W FREDM-KE4F | Mied X /B Mbrd Compiler FIDM- %
« © | @ ntpeionmbed.com/compser s FROM-KEAF-Flashied/Flashied.cpg @

FRDM-KG4F

ou ane currently compiling for the FROM-KE4F platform.

Rerription | Pinout

The Freedom-KE4F is an ultra-low-cost development platform for Kinetis K4, K53, and K24 MCUs.
Overview

The Fiagship FROM-KE4F has been designed by NP in collaboraticn with mbed for prototypieg & sons
of Seices, Sipecally MOSE (NG CpLAIES 08 ANG Proe Points.
mmsmmbmammmwummwswm

ing an ARME Cortexd-M4 core nmnqwrnlmm
‘and lots of paripherals (16-bit ADCs, DAC, Timers] and interfaces
and Seral).
The Kinetis khd M1 Eamilly remains fully software, harbaans and dessiopment tool rompatibility wth
Kinetis MCU and Freedom board families.

g Extengion headers compatible with Arduing k3 shisids

g ard Flash

Figure 4.14 The Arm® Mbed™ manage platforms pop-up window.

W FRDM-GBF | MEed X
€ & C [@ npsonmbeccom/platiorms/FROM-K64F o

Board Partner

NXP

MNXP is a leading semiconductor
company founded by Philips more
than 50 years ago.

Overview

The Flagship FROM-K&4F has been designed by NXP in collaboration with mbed for
prototyping all sorts of devices, espec hase requiring optimized size and price points. The 4, Board Block),,,5, amn

boardis well sized for connected applications, thanks to its power efficient Kinetis KS3F MCU 5, Board Finout R
featuring sn ARME CortexB-M4 core running up to 120MHz and embedding 1024KB Flash, _,.
256KB RAM and lots of peripherals (16-bit ADCs, DAC, Timers) and interfaces (Ethernet, USB 7. Firmware Update T Buy Now
Device Crystal-less and Seriall. The Kinetis K64 MCU family remaing fully software, hardware 8.G ted with
with Kinetis MCU families. It is mbad
kaged board including extension b ible with Arduino R3 g.Fmhaprolectbinary Do e e
shields and includes a bullt-in USE Debug and Flash Programmer, 10.Open existing Project \emaove from y

Mbed Com

“You have this board in your Mbed
Compiler. If you do not use it you

MCU Features e
+ Kinetis MKSSFNIMOVLL1Z in 100LOFP

o ARME Cortex™-M4 32-bit core with DSP instructions and Fioating Point Unit (FPU) 94, i..m_.,. ted -

s Performance

Figure 4.15 The Remove platform section in FRDM-K64F development board home page.

Getting Started with Arm® Mbed™ | 63
4.8 Clone Your Program

If you want to create a new program based on the existing one, you can clone your
program, i.e., make a copy of the existing program. Just select the program you would
like to clone, right-click to display the pop-up menu, and select “Clone...” (Figure 4.16).
Then select the new name that you would like to save the cloned program as Figure 4.17.

-] - o *
M FROMKBE | Mbed X] Mows Compierimbas, X
€ | @ Secure | MIpE/osmbed.com/ compik eravimbed_bhinky @ gr|
Mbed fmbed_blinky
FiMew v Py imoort | L] Seve L] Save sl | (] complle” v | @ Commit '~ (D Resision | v oo | B 5 | [Help FROM-KE4F 4
Program Workspace < Program: [mbed_blinky Program Details
2 B8 My Programs Y |Type to filter the list ... () Match Case [Whole Word O Fnd || [
[FROM-K64F-Flashied - = = | Surwmry . [EBUd)
E - Size | Type Modified
— 7Y New Fie... Name mbed_blinky
J £ Hew 0.2kB CJC++ Source Fle momentsa Created moments age
() mibeg Folder... Last Modified
23] v Librawy,.. Library Build moments af i moments ago
B Import Library... » waL mbed/mbed_blinky
) Export Program... Ctr-E Revision 18:1felchd
4, Find In Program... Ctd-Alt-F Status symced
@ Revisions... bl o Update @ Commit () Revisions
I seve A Ctrl-Shift-5 [= T 1
@ commit... Cl-shin-C) Bpot @] Publish % e
& Update... » | Description I
& Updata AlL.. - — =1
&) Pubih... Chishety [for Program: mbed_blinky [WVerbose |.Errm.0 Warnings: 0 | tnfosso |
Error Number | Resource | In Folder | Loca
B Copy -C
A Rename F2
X Delete... Del >

Figure 4.16 The Clone program menu in the program web page.

UUse this form to save "mbed_blinky™ a5 a new object.

D icsse specfy program name

Allowed are alphabetic characters, numbers, slash, dash,
nnderling.

ok || concs |

Figure 4.17 The Save as pop-up window during cloning.

64

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™
4.9 Search and Replace

You can search in your program by clicking the “Find” button on the top, or pressing
“CTRL+F” keys. A search and replace tool bar will then appear (Figure 4.18). You can
use it to search and replace within your current file. The “Advanced” button on the right
side allows you to search all the files within your project folder (Figure 4.19).

-] - (=] X
W FADM-K54F | Mbed ®/ [Mbed Compier fmbud: X
“ C | @ Secure | MIpE ORMEEI00M com piker ruvmbed_bhnky/maincpp |
Mbed /mbed_blinky/main.cpp
Py Now v B oot | L] S) o | (2] Compile | @ Commit v) Revision | [4] 81 | (L1wep FROM-K64F
NI et
= B My programs Firclude "mbed.h® |
) FRDM-KG4F-Flahlad [
=] rribed_blinky Digitalout myled (LED1);
- int main() {
4} mbed while(l) {
7 -1
walt (f
myled
1 wait(0.2);
: 1 v
< >
Find: [myted| | Reptace: | | [Find | [Repiace || Repiace an || advanced |
] Match Case 1 Whole Word |_) Regular Cxpression
Compile output for program: mbed_blinky [WVerbose | Emoss0 | Wamings:0 | Infos: 0 |
Desaription | Error Number | Resource | In Folder | Loca
< 31
Figure 4.18 The search and replace in your program.
-] - (=] X
W FADM-K54F | Mbed x/ [Mbed Compier fmbud: X

L | Secure | MIpE/ DRmERE.S0M) Com ik Rrv e Ea Bl maincp

Find in Files

Find In Files

Use this form to find string occurences in files inside folders,
programs and even your entire workspace!

Find string:
Find in: EQ rbed_blinky
Filetype: [Any (c, <op, h, hop, 5)

[Match Case [In Subdirectories
OPUE &) whole Ward () Regular Expression

Figure 4.19 The advanced search in all files in your program.

Getting Started with Arm® Mbed™ | 65
4.10 Compile Your Program for Multiple Platforms

Although this book is focused on the FRDM-K64F development board, most codes are
compatible with other platforms, such as NXP LPC1768. All you need to do is to put
the platform-specific code in the “#if defined() #elif defined()” structure; see the
following code.

R RS R SRR EES

// Example 4.5
#include "mbed.h"

#if defined (TARGET_K64F)
//FRDM-K64F code here

#elif defined(TARGET_LPCl768)
//LPC1768 code here

#elif defined (TARGET_LPC433 O_M4)
//LPC4330 code here

#endif

int main()
while (1)
//common code here
}
}

Rk b Sk b S R R R Rk S kR R S R R kS Rk

The platform-specific codes are mostly related to pin settings. Table 4.1 shows a
comparison of the pinout between FRDM-K64F and LPC 1768 boards. When you
compile the program, just make sure to select the correct platform. Mode details will
be available in the next few chapters.

4.11 Delete Your Program

From your online compiler, to delete your program, just select the program you want
to delete, and right-click the mouse. From the right-click drop-down menu, select
“Delete...” (Figure 4.20). Simple!

66

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Table 4.1 The pin comparison of FRDM-K64F and LPC 1768.

FRDM-K64F LPC 1768
LED LED1 (LED_RED), LED1,
LED2(LED_GREEN), LED2,
LED3 (LED_BLUE) LED3,
LED4 (LED_RED) LED4
Digital inputs/outputs Do, D1, D2, ..., D15 P5, P6, ..., P14
Analog inputs A0, Al, A2, A3, A4, A5 P15, P16, ..., P20
Analog outputs DACO_OUT P18
PWM (pulse width A4, A5,D3, D5, D6, ..., D13 P21, P22, ..., P26
modulation)
12C D14, D15 (SCA, SCL) P9, P10 (SCA, SCL)
SPI D11, D12, D13 (MOSI, MISO, P5, P6, P7 (MOSI, MISO,
SCLK) SCLK)
PTD4 (CS) P8 (CS)
Serial D1, DO (Tx, Rx) P9, P10 (Tx, Rx)

W FRDM-54F | Mted

! « | @ Secure | Matps/osmbed.com comper rvy mied bk
Mbed /mbed_blinky
Py New v B Tmpiort Save Al | (2] Compile v | @ Commit v (D Revision |« s
Program Workspace < Program: /mbed_blinky
Sy perons v Moo o o

-E FROM-K64F-Flashled =

e Size | T

= & 7Y hew Fie.. YEs

- :] New Folder... e 0.2kB CfC++ Source Fle
= % 23 New ibeary... beary Build

) Impart Library... v
=) Bxport Program... Ctri-E
A, Find in Program... Ctrl-Alt-F
O Revisions... an-R
e save il Ctrl-Shift-5
& commit... Chrl-Shift-C
& Update...
& Update AlL..
@) Publish... Ctri-shift-u ptput for program: mbed_blinky
M, Clone... ption
i Copy ar-C
A Rename F2
[velete... e

3 ;[Mbed Compiler jmbad: %

Figure 4.20 The Delete menu in the program page.

® | §

Y | [Help FROM-KG4F 4
Program Details
=, Bnd | Surmmary Build
Modified | pame mbed_binky
momentsa Created moments ago
moments af Last Modfied moments ago
Last Built Hever
uRL I
Revision 18:1felch8
Status symoed
o @& Commit () Revisions
[Export (@ Publish & Homepage
» Description
Verboge Errors: 0 Warnings: 0 Infos: 0
Error Number | Resource In Folder Loca

Getting Started with Arm® Mbed™

4.12 Disaster Recovery Procedure

In the event of a disaster, i.e., a faulty program etc., where you cannot see your mbed
USB drive anymore, you can use the following procedure to recover:

e Unplug the FRDM-K64F board.
o Hold the reset button down.
o While holding the reset button, replug in the FRDM-K64F board.

The mbed USB drive should reappear. Keep holding the reset button until the new
program is saved onto the USB drive.

In the worst-case scenario, when even the new program cannot solve the problem,
you will probably need to reload the Firmware; see next section for details.

The following page has more details on how to deal with “dead” mbed devices.

https://os.mbed.com/cookbook/deadmbed

4.13 Upgrade Firmware

As of this writing, the latest firmware version for the FRDM-K64F is 0226. You can
check the firmware version by either opening the DETAILS.TXT file if present on your
mbed board or opening the MBED.HTM file with a text editor.

If you need to upgrade your firmware, or simply recover from a disaster, as described
in the previous section, the following web page has all the details. Figure 4.21 is the
screenshot of the web page.

https://os.mbed.com/handbook/Firmware-FRDM-K64F

You will basically need two steps:

1) Enter Bootloader Mode
You can enter the Bootloader mode by unplugging the FRDM-K64F board, press and
hold the reset button, replug the board, and release the reset button. You board
should be mounted on your computer as “Bootloader” drive (Figure 4.22).

2) Download and Upgrade the Firmwire
Download the latest firmwire from the website; copy and paste it into the
“Bootloader” drive.

The latest firmware for LPC1768 and LPC11U24 can be found in:

https://os.mbed.com/handbook/Firmware-LPC1768-LPC11U24

4.14 Help

From your online compiler, you can get help by clicking the “Help” menu. It has all the
details on how to get started, how to import programs and libraries, as well as collabo-
rations, API documents, publishing your code, exporting your code and shortcuts
(Figure 4.23).

Further Information on Help

https://os.mbed.com/docs

67

https://os.mbed.com/cookbook/deadmbed
https://os.mbed.com/handbook/Firmware-FRDM-K64F
https://os.mbed.com/handbook/Firmware-LPC1768-LPC11U24
https://os.mbed.com/docs

68 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

@ Table of Cortents

M 2
e Lt e e B e PRSI G228 Th ERAck o Ao werien e b e

+ O the DETALSTHT fie f presert.
+ 17 PSE BrevRnL, Open v MESELHTMA fle 00 your ied FACTOCoTMAOher W) & LT ecor

Fhe Lt st e interlace upgrade Fle for the FROMARS0

Enter Bootloader Mode

1, DO 45 powar, X0l CREUTS 3 USH cabien.
3. Prews anvd hok e battons marked RTSET iricled b picture)
3. TV LIS ca . Shom I e et
. The diive shouls mount ramed BOOTLOABER
5. The rese buttn can Row De released

B P M x
€30

acurs. | PHtps/ TR oM

arm meep Mbed S Mbed Cloud Partner Portal Search.— Q

O5Home Hardwarew Code Documentations Questions Forum

Handbook » Firmware FRDM Ké4F

Firmware FRDM K64F

& Firmware hosting has been moved

This page is no longer maintained. Visit the following website for latest firmware and

instructions. Recent
* Get the latest DapLink firmware for FRDM-K6é4F here changes
Firmware FRDM
K22F
M All wikipages

B cpestt bema ey x

€« clo coijnn-time. e et)
Deownload - DpenSDA Bootloader and Application =
dump T
Bsnkac - pensns To update your board with OpenSDA applications FROM-KEF
e —
| varven & Faatures Note:

Cermparnen Tamie ol Dimrwre

1 b B Fiporied Fial OpenSOA v22 1 bootiomder coukd be comsti when Bhe board is pugged
CperSoa Veniom " 1

akon on rosohng
in ot Bt Case chived

FROM-KE4F [T -

1. Chick wiich Bockoaser veesion s dready
orpeogrammed on youl board. If e versen
Miakches S verson showe beiow, fen procesd o
S99 2 I Bhorn I5 @ mismalch, poase wpdaio
Bocticades o CAPLsk OparSDA vZ 2 and then
procesd o siep 2

OpenSDA version / boctloader
* DAPUNKG 10v02 44 CoonSDA v2 2 Boooadsr
ke Finary | Sowrea Code)

4 Dowmioac th Enary 107 B adatonal CpenSoA
Applcalion sl for youir board

Latwst firmware apglication
= DAPLink (1244 - works with dellt CMSES-
AP bocToace:

= PAE Mo vITe

Figure 4.21 The mbed web page for upgrading FRDM-K64F firmwire (top) and following the link to
NXP firmware page (bottom).

Getting Started with Arm® Mbed™ | 69

= | BOOTLOADER (E)

- [m] Xq:J
-:p v ~

U o cuf B x Eﬁ I3 New item = 9 =] open - Fselectall
Wi Copy path * 1] Easy access ~ I Edit 1 Select none
PintoQuick Copy Paste - Move Copy Delete Rename New Properties
R [F] Paste shortcut tor to- i folder i @History T invert selection
Clipbosrd Organize Mew Open Select
« “ 4 = > BOOTLOADER (E) v &/ | Search BOOTLOADER (E))
5 B Neme o Date modified Type Size
SRR [¢] bootload 14/12/20121452 HTMFile 1KB
Documents
Music
> Pictures
Public
> [This PC
5w BOOTLOADER (E)
> o Network
Titem 1 item selected 512 bytes EH=
Figure 4.22 The mbed board in Bootloader mode.
a - a x
W Frreare WPCITEE LPC) /[Mbed Compierbelp X
L | @ Secure | MIDE OEmME.00m/ Compike Fray L
Mbed Help
) mew ~ P import - > «] S |0 Hep FROM-KEAF
Proqgram Workspace < Haelp
= [my Programs ~ The mbed Online Compiler
[FROM-KgaF-Fashied E
=B mbd_Elinky Choose a category
Geming Started | Importing Collaborabion | API Documentation | Publshing Exporting | Shortouts
...... x =

W

| m—

| emmen—— e g
mlnm.rwlsu-

| | o e | oy |

Figure 4.23 The online Help window.

4.15 Summary

This chapter describes the hardware and software required for the Arm® Mbed™
development. It also illustrates the steps to get started with the Arm® Mbed " develop-
ment, how to import and run your first LED blinking Hello World program, and how

™

70 | Designing Embedded Systems and the Internet of Things (oT) with the ARM® Mbed

to create a new project, how to manage the platforms, how to clone your program, how
to search and replace, how to compile your program for multiple platforms, how to
delete your program, how to recovery from disaster, how to upgrade firmware, and
how to get help.

5

Inputs and Outputs

Whether you think you can, or you think you can’t—you're right.
- Henry Ford.

5.1 Digital Inputs and Outputs

Digital inputs and outputs are used to read in and write out digital values (i.e., 0 or 1).
The mbed uses a power rail of 3.3 volts, with 0 volts representing 0 (or off), and 3.3 volts
representing 1 (or on).

5.1.1 Digital Inputs

Connect the mbed FRDM-K64F development board to your computer. From the online
compiler, create a new project, call it “FRDM-K64F_Digitalln, and change the “main.
cpp” content as shown in Figure 5.1.

The “#include “mbed.h” line includes the mbed header file into the program, which
provides all the functions of mbed. The “Digitalln din(D7)” line creates a digital input
from pin D7 and associates it with a variable called din. There are 16 digital pins in
FRDM-K64F, ranging from DO, D1..., to D15. In the “main()” function, the “while(1)”
represents an indefinite loop. This is typical for microcontrollers, as they need to work
continuously all the time. Inside the loop, “din.read()” read the value from the digital
input. As it is digital, the value is either 0 or 1. The “printf)” prints the results out; “%d”
means print a integer type variable value here. “\n\r” means go to a new line after print-
ing. “wait(0.25)” means wait for 0.25 second. By default, “printf()” prints to computer
serial port, this is very useful, as you can view the results using a Terminal software,
such as “Tera Term” (Figure 5.2). There will more about serial communications in the
next chapter.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

71

72

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

R S S S R

// Example 5.1
#include "mbed.h"
DigitalIn din(D7);
int main(void)

{

while (1) {
printf (“$d\n\r”,din.read()) ;
wait (0.25) ;

}

R S I R S

€« cfs f— . ral
Mbed /FRDM-K64F _Digitalin/main.cpp
Fimew v P import | bl Save K Save Al | (] Comple v | @ Commit v (3 Revision | AR “ | Help FROM-KEAF g
Program Workspace €) makcpp (X
= By programs
L] FROM-KE4F-Flashled
= || FRODM-K64F_Digitalln
¢ main.cpp *
Compile output for program: FRDM-K64F_Digitalln Verbase | Eroes: 0 5 0
Duscription Error Numibes Rusounce n Folces Loca
£ »

Figure 5.1 The "FRDM-K64F_Digitalln” program page.

COM3 - Tera Term VT _ O Figure 5.2 The Tera Term outputs.
File Edit Setup Control Window Help

Inputs and Outputs

Digital inputs are very useful to reading digital values, such as the outputs from a
push button and PIR (Passive Infrared) sensor, as illustrated in Figure 5.3.

Push Button mbed

Pinl > D7
Pin2 -> GND

vCC

Pin2 Pinl

GND

out

Figure 5.3 The schematic circuit diagram of FRDM-K64F board with a push button (top) and PIR

sensor (bottom).

73

74

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

5.1.2 Digital Outputs

For digital outputs, create another new project, call it “FRDM-K64F_DigitalOut,” then
modify the “main.cpp” file as follows. In this case, the line “DigitalOut led(LED_BLUE)”
creates a digital output for blue color of RGB LED, and associates it with a variable
called led. The line “led = !led” simply mean you switch the blue LED to opposite state,
if it is one, switch it off, and if it is off, then switch it on. You can also change blue LED
to any of the other digital pins: DO, D1, ... D15.

R S S I S R S S

// Example 5.2
#include "mbed.h"
DigitalOut led(LED_BLUE) ;

int main(void)

{

while (1) {
led = !led;
wait (0.5f) ;

R S S I S R S S

Exercise 5.1

Modify the above program so that it blinks “SOS” in Morse code.

Exercise 5.2

FRDM-K64F has an RGB LED, which includes a red LED (LED_RED), a green LED
(LED_GREEN), and a blue LED (LED_BLUE) inside. Modify the above program so that
it switches each red, green, and blue LED on and off, one after another, with each lasting
for half a second.

Exercise 5.3

By switching on and off each red, green, blue LED, it is possible to create 23 = 8 different
colors. Modify the above program so that it switches the 8 colors in a sequence, with
each lasts for quarter a second.

Inputs and Outputs

Alternatively, you can also connect an external LED, as shown in Figure 5.4, where
LED’s long leg (+) is connected to D7, and short leg (-) is connected to the GND.
Following is the example code to flash the LED.

R R R i kR R ki kS

// Example 5.3
#include "mbed.h"
DigitaloOut led (D7) ;

int main (void)
{
while (1) {
led = !led;
wait (0.5f) ;

}

R R i kR R ki kI E E E E E E

LED mbed
+ > D7
- > GND

Figure 5.4 The schematic circuit diagram of the FRDM-K64F board with a LED.

75

76

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 5.4

Based on above example, use three LEDs, red, green, and yellow, and light them up in a
traffic light pattern.

You can also check the maximum digital output frequency by switching on and off a
digital pin without any delays, as shown in the following example, which sets D2 pin as
a digital output. You can observe the changes of the output by using an oscilloscope.

R R IRk ki kR Rk ki ki

// Example 5.4
#include "mbed.h"
DigitalOut dout (D2) ;

int main(void)

{

while (true) {
dout = !dout;

}

R R IR Ik ki ko ki ko E E E E E E E E E k E E E E E E E k E E

Figure 5.5 shows the D2 pin digital output using a PicoScope 2000 series digital
oscilliscope.

https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview

|_h M

= T s FREL] (D " [I ET]

Figure 5.5 The FRDM-K64F digital output using PicoScope.

https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview

Inputs and Outputs | 77

The results show that it is possible to set digital outputs as fast as 666.7 Hz.

Now you can combine the digital inputs and outputs to do something interesting. The
following example reads the digital pin D7, reverses its value (dout = /din;), and sets it
for D8 pin for output. The “printf()” prints out the two pin values, separated by tab “\¢’,
to the computer serial port, as shown in the “Tera Term” screenshot (Figure 5.6). Again,
“%d” means to print the numbers as integers, and “\n\r” or “\r\n” means to insert a new
line after printing.

R S S S S R S

// Example 5.5
#include "mbed.h"

Digitalln din (D7) ;
DigitalOut dout (D8) ;

int main(void)

{

while (1) {

dout = !din;
printf ("$d \t %d \n\r", din.read(), dout.read()) ;
wait (0.5f) ;

}

R S S S S R S

o COM3 - Tera Term VT = =

File Edit Setup Control Window Help

Figure 5.6 The Tera Term outputs.

78

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 5.5

Modify the above program so that it reads two digital inputs from pins D6 and D7,
performs the logical AND, and sets it to D9 pin for output.

The above code can be modified for both FRDM-K64F and LPC 1768 boards. So on
FRDM-K64F it uses D7 and D8 digital pins, while on LPC 1768 it uses P11 and P12 pins.

R R IR Ik i i ki ki Rk ki ki

// Example 5.6
#include "mbed.h"

#if defined (TARGET_ K64F)
DigitalIn din (D7) ;
DigitaloOut dout (D8) ;

#elif defined (TARGET LPC1768)

DigitallIn din (P11) ;
DigitaloOut dout (P12) ;
#endif

int main(void)

{

while (1) {

dout = !din;
printf ("%d \t %d \n\r", din.read(), dout.read());
wait (0.5f) ;

R R IR Ik I i i i ki kI Rk ki ko ki

Apart from the digital inputs and digital outputs, you can also set a digital pin as both
input and output, i.e., bidirectional, as illustrated in the following example. It first sets
pin D7 (or P11 in LPC1768) as input, waits for 0.5 second, reads and prints its value,
then sets the pin as output, sets its value to 1 (i.e., 3.3 V), prints out the value, and waits
for another 0.5 seconds.

R S S S R S S

// Example 5.7
#include "mbed.h"

#if defined (TARGET K64F)

DigitallIn din (D7) ;
#elif defined (TARGET LPC1768)
Digitalln din (pl1l) ;

#endif

Inputs and Outputs

int main(void)
{
while (1)

pin.input () ;
walit (0.5f) ;
printf ("Input: %d \n\r", pin.read()) ;
pin.output () ;
pin = 1;
printf ("Output: %4 \n\r", pin.read());
walit (0.5f) ;

}

Rk b S S S O I S S R S S

5.1.3 Busln, BusOut, and BusinOut

In mbed, “Busin,” “BusOut,” and “BuslnOut” interfaces allow you to create a number of
Digitalln pins that can be read and/or written as one value. In the following “Busin”
example, it reads pins D3, D4, D5, D6 (or for LPC1768 are P12, P13, P14, P15) as one
value. D3 is the least significant bit (LSB), and D6 is the most significant bit (MSB). Any
of the numbered mbed pins can be used as a Digitalln in the “Busin,” “BusOut,” and
“BusinOut.”

R S S S S R S S

// Example 5.8
#include "mbed.h"

#if defined (TARGET_K64F)

BusIn nibble (D3, D4, D5, D6);
#elif defined (TARGET_LPC1768)

BusIn nibble(pl2, pl3, pl4, P15);
#endif

int main()
while (1)
// read the bus and mask out unused bits
int v = (nibble & nibble.mask()) ;
printf ("$d\r\n",v) ;
wait (1) ;
}
-)}c***

The “BusOut” can create a number of Digitalln pins that can be written as one value.
In the following example, RGB LED (for LPC1768 are LED1, LED2, LED3) will light up
as binary values from 0 to 7.

79

80

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 5.9
#include "mbed.h"

#if defined (TARGET K64F)

BusOut nibble (LED RED, LED GREEN, LED BLUE) ;
#elif defined (TARGET LPC1768)

BusOut nibble (LED1, LED2, LED3) ;
#endif

int main()

while (1) {
for (int i=0; 1<8; i++) {
nibble = 1i;
wait (0.5) ;

}

R S S S R

The “BuslnOut” can create a number of Digitalln pins that can be read and written as
one value. In the following example, it creates a bus of four pins: D3, D4, D5, D6 (for
LPC1768 are P12, P13, P14, P15). It first sets the bus as output mode, and writes value
OxF to it, i.e., all pins are set high. It waits for 0.25 second, then sets the bus as input
mode, waits for another 0.25 second, and reads the value from the bus and prints it to
computer serial port. The “%X” means to print the value in hexadecimal format.

R S S S R S

// Example 5.10
#include "mbed.h"

#if defined(TARGET_K64F)
BusInOut bio (D3, D4, D5, D6);
#elif defined (TARGET LPC1768)
BusInOut bio(pl2, pl3, pl4, pls);
#endif

int main()
while (1) {

bio.output () ;
bio = 0xF;
wait (0.25) ;
bio.input () ;
wait (0.25) ;
// read the bus and mask out unused bits
int v = (bio & bio.mask()) ;

Inputs and Outputs

printf ("$X\n\r",v) ;
}
}

Rk b S b S O I S S O R S S

Further Information on “Busin,”“BusOut,” and “BusinOut":

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/Digitalln/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/DigitalOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/DigitallnOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/BusIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/BusOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/BusInOut/

5.2 Analog Inputs and Outputs

5.2.1 Analog Inputs

Analog inputs are for reading in voltage values (0-3.3 V) from the pins, with 12-bit and
16-bit resolution, and sampling rate can go up to 800 ksps. The analog pins are A0O, A1,
.» A5. The analog outputs are for setting voltage values (0-3.3 V) to pins for outputs.
The analog pin is DACO_OUT.

Connect the mbed FRDM-K64F development board to your computer. From the
online compiler, create a new project, call it “FRDM-K64F_Analogln,” and change the
“main.cpp” content as shown. The “Analogln ain(A1)” line creates an analog input from
pin A1l and associates it with a variable called ain. There are six analog pins in FRDM-
K64F, ranging from AO, Al..., to A5. Inside the loop, “ain.read()” read a floating-point
value from the analog input, as a fractional percentage. The “printf{)” prints the results
out, “%10.3f" means print a float-type variable value here, using minimum 10 spaces
and 3 decimal points. f means floating-point number. “wait_ms(500)” is another wait
function, which means waiting for 500 millisecond.

R S S S S R S

// Example 5.11
#include "mbed.h"
AnaloglIn ain (Al) ;

int main(void)

{
while (1) {
printf ("$10.3f\n\r", ain.read()) ;
wait ms(500) ;
}
}

R S S S S R S

81

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalInOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusInOut/

82

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

You can also read in 16-bit values, as shown in the following example. In this case,
“ain.read_ul6()” reads a 16-bit normalized value from pin A0 and assigns it to variable
v, which is an “uintl6_t” type of integer. “%04X” means print the value as a four-digit
hexadecimal value. The “Ox” in the front simply adds Ox in front of the hex number,
e.g., 0x56.

R S S S R S

// Example 5.12
#include "mbed.h"
AnaloglIn ain (A0) ;

int main (void)

{

uintlé _t v;
while (1) {
v = ain.read ulé6 () ;

printf ("0x%04X\n\r",v) ;

wait ms (500) ;

}

R S S S I R S

Analog input is very useful for reading in the voltage values from sensors, such as
analog temperature sensor (LM35) and light-dependent resistor (LDR). Figure 5.7
shows typical setups for FRDM-K64F board with a temperature sensor and with a LDR
Sensor.

5.2.2 Analog Outputs

For analog output, from the online compiler, create a new project, call it “FRDM-
K64F_AnalogOut,” and change the “main.cpp” content as shown. The “aout.write()”
write to the analog output pin with a floating-point value, represents as a fractional
percentage. In this case, it writes 0.5 x 3.3 = 1.65 volts to the pin. The same commend
can also expressed as “aout = 0.5f” Figure 5.8 shows the Tera Term outputs of the
program.

LM35 mbed

vcc > 33
our > AD
GND -> GND

vcc

Inputs and Outputs

outr

LDR mbed

Pin1 -> AD
-> 10kQ) -> Sv
Pin2 -> GND

e]
10k0

Figure 5.7 The schematic circuit diagram FRDM-K64F board with a temperature sensor (top) and LDR

sensor (bottom).

83

™

84 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

o COM3 - Tera Term VT - =

Eile Edit 5Setup Control Window Help
f

Figure 5.8 The Tera Term outputs.

khkkhkkhkkhkhkhkkhhkhkhhkhhhkdhkhkdhhkdhhkdhhdhhdhddhddhdhhrdrhdrhrdrhrdrdrdrddx*x

// Example 5.13

#include "mbed.h"
AnalogOut aout (DACO_OUT) ;
int main(void)

{

while (1) {

aout.write (0.5f) ; // or aout = 0.5f;
printf ("aout = %10.2f volts\n\r", aout.read() * 3.3f);
wait (1.0f) ;

}

khkkhkkhkkhkhkhkkhhkhkhhkhhhkdhkhkdhhkdhhkdhhdhhdhddhddhdhhrdrhdrhrdrhrdrdrdrddx*x

Inputs and Outputs

Exercise 5.6

Modify the above program so that it reads the analog input from pins A0, multiply it by
10, and set it to the analog output pin DACO_OUT for output.

The following example uses a for loop to set the analog output pin DACO_OUT in a
seesaw format. It starts with 0.0 x 3.3 volts, increased by 0.1 x 3.3 volts each time, all the
way up to 1.0 x 3.3 volts, then starts all over again.

R R i kR kI ki

// Example 5.14
#include "mbed.h"
AnalogOut aout (DACO_OUT) ;

int main (void)
{
while (1) {
for (float i = 0.0f; i < 1.0f; i += 0.1f) {
aout = 1i;
printf ("aout = %10.2f volts\n", aout.read() * 3.3f);
wait (0.2f) ;

}
}

R R i I kR R ki ki

Exercise 5.7

Modify the above program, so that it can create a sine wave on the analog output pin
DACO_OUT pin.

The following is a multiple platform example for both FRDM-K64F and LPC 1768
boards. It simply reads the analog input, A0 on FRDM-K64F, and P15 on LPC 1768,
then assigns the value to analog output pin, DACO_OUT on FRDM-K64F, and P18 on
LPC 1768.

85

86

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

R S S S R

// Example 5.15
#include "mbed.h"

#if defined (TARGET K64F)
Analogln ain (A0) ;
AnalogOut aout (DACO_OUT) ;

#elif defined (TARGET LPC1768)
Analogln ain (pl5) ;
AnalogOut aout (pl8) ;

#endif

int main (void)

{
while (1) {
aout = ain.read() ;
printf ("%$10.2f \n\r", aout.read());
wait (0.5f) ;
}
}

R S S I R S S

For more details about Analog Inputs and Outputs

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/ Analogln/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/AnalogOut/

5.3 Pulse Width Modulation (PWM)

Pulse width modulation, or PWM, is popular a technique for microcontrollers getting
analog results with digital means. It first creates a square wave signal with a fixed fre-
quency. Then, by varying the width of the pulses, you can change the output power.
For example, PWM can be used to control the LED light intensity, or to control the
motor speed.

To use PWM, from the online compiler, create a new project, call it “FRDM-K64F _
PWM,” and change the “main.cpp” content as shown. The “PWMOut pout(D9)” define
D9 pin as PWM output, the “pout.period(2.0f)” specify the period as 2 seconds, and the
“pout.write(0.5f)” specify the duty cycle is 0.5 or 50%, i.e., 1 second. This code generates
a fixed PWM output of 2-second pulses with 50% duty cycle. Modify the code, to change
the duty cycle to 10% and 90%, and use an oscilloscope to observe the changes in
pulse width.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/AnalogIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/AnalogOut/

Inputs and Outputs | 87

Rk b S b S O I S S O R S S

// Example 5.16
#include "mbed.h"
PwmOut pout (D9) ;

int main()
pout .period(2.0f) ;
pout.write (0.50f) ;
while (1) ;

}

Rk b S S S O I S S R S S

If you want to change the PWM output while it’s running, you will need to modify
the while loop. As shown in the following example, it sets the period as 1 second, and
within the loop, it first sets the duty cycle to 0.5 second, waits for 5 seconds, then sets
the duty cycle to 0.1 second. You can either use “pout.pulsewidth(0.5f)” or “pout.
write(1.0f)” to specify the duty cycle. The difference is that “pout.pulsewidth(0.5f)”
specifies in seconds, while “pout.write(1.0f)” specifies in percentage. If you put an LED
across the D9 pin and the ground, you will see the LED on brightly for 5 seconds, then
dim for 5 seconds.

Rk b S S S I R S S S

// Example 5.17
#include "mbed.h"

#if defined (TARGET K64F)
PwmOut pout (D9) ;

#elif defined (TARGET LPC1768)
PwmOut pout (p26) ;

#endif

int main()
pout .period (1.0f) ;
while (1)
pout .pulsewidth (0.5f) ;
walit (5.0f) ;
pout .pulsewidth (0.1f) ;
walit (5.0f) ;

}

Rk b S S S O I O R S S

88

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 5.8

Imagine that you connected a potentiometer to analog input A0. Modify the above
program so that it reads the value from A0, and change the PWM pulse width
accordingly.

A very useful application of PWM is to drive a servo motor. In this example, you will
need to import Servo library:

https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07//classServo.html

Rk bk S R R Ik R I R I I R

// Example 5.18

#include "mbed.h"
#include "Servo.h"

#if defined (TARGET K64F)
PwmOut pout (D9) ;

#elif defined (TARGET LPC1768)
PwmOut pout (p21) ;

#endif

int main() {
for (float p=0; p<1.0; p += 0.1) {
myservo = p;
wait (0.2) ;
}
}

Rk S kS I R Ik I kR R O I

Further Information about PWM

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/io/PwmOut/

5.4 Accelerometer and Magnetometer

FRDM-K64F has an onboard six-axis combo accelerometer and magnetometer sensor
(FXOS8700Q). To use a sensor, from the online compiler, create a new project, call it
“FRDM-K64F_FX0S8700Q,” and change the “main.cpp” content as shown. Figure 5.9
shows the program page from the online compiler.

https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07//classServo.html
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/PwmOut/

Inputs and Outputs

R b S S S O R S S

// Example 5.19

#include "mbed.h"
#include "FX0S8700Q.h"

I2C i2c (PTE25, PTE24) ;
FX0S8700QAccelerometer acc(i2c, FX0S8700CQ SLAVE ADDR1) ;

int main(void)
{
motion data units_t acc_data;
acc.enable () ;
printf ("FX0S8700QAccelerometer Who Am I= $X\r\n", acc.whoAmI());
while (true) ({
acc.getAxis (acc_data) ;
printf ("$1.4ff $1.4ff %1.4ff \r\n", acc data.x, acc_
data.y, acc_data.z);

wait (1.0f) ;

}

Rk b Sk S R S S

e - o X
B Firmware LPC1768 LPCT - x BBl Mibed Compler /FROM- X
3 Cc \ @ secure | httpsy//os.mbed.com/compiler/#nav;/FRDM-K64F_FXOS8700Q/main.cpp; Q ﬁ\ H
/FRDM-K64F_FX0S8700Q/main.cpp
77 New v P Import | [Save [Save All | (] Compile v | @ Commit v (D Revison | x2 c« | @& | & | N\ | [L]Help FROM-K64F 4
Program Workspace <
= [My Programs -~
FRDM-K64F-Flashled ~
FROI K647 _Digitalln 'ROSB700¢ i - (i)i 2 FXO0S8700CQ_SLAVE_ADDRI1.
= 1) FROM-K64F_FX0S67()88700QAceeleroneter ace(ile, F 700CQ_SLAVE)i
(&) main.cpp * nt main(veid)
B () mbed 10 {
printf("FX0S8700QAccelerometer Who Em I= #x\r\n", acc.wheimI()):
while (true) {
acc.gethAxis (acc_data);
printf("%1.4£f 21.4£f 21.4£f \r\n", ace_data.x, acc_data.y, acc_data.z);
wait(1.09);
}
v
Compile output for program: FRDM-K64F_FX0S8700Q () Verbose | Emors:0 | Warnings:0 | Infos:0
Description Error Number | Resource In Folder Location
< 5 | Compile Output | Find Results | Notifications v
Ready. s || =y

Figure 5.9 The “FRDM-K64F_FX0S8700Q" program page.

89

90 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

M Firmvre LPC1768 171 X)/ [Mbed Compiter Import | X

€ C | @ Secure | https;//os.mbed.com, r/#nav;/FRDM-K64F_FX Y/main.cpp:panekimport %

) Ne mb s Al | {%] compile v | @ Commit v (9 Revision =« N [Help FROM-K64F 4,

Program Workspace < Import Wizard Published Library Details

: @,MY FYOgRIES Import a library from os.mbed.com R POSeZo00)
[FROM-K64F-Flashled uthor
FROM-KB4F_Dighalln DB Select brary from the list. You can also drag&drop them in your workspace. Published 97 Apr 2014

to import from URL.
FRDM-K64F_FX0S87(

E Last Updated 07 May 2014
- z :";:m" 5 Programs | Libraries | Bookmarked | Upload edch 1’::2"5 11%
Listing published libraries on os.mbed.com matching "FX0S8700Q" Commits
Name Tags Author Imports | Modified Descriptior | Dependents
Depend

% FX0S8700CQ 7 An in-develo
Ve FXAS21000 89 02Jun2014 Basic compo €) Apache 2 License

¢ FX0S8700 87 25Apr2017 FX0S8700 lil —
V¢ FXAS21002 73 25Apr2017 FXAS21002 | % Library Homepage
% K64_FX0S8700 K 66 18Jun2014 Adcasstofe | Tags
¢ FX0$87000Q ISP : g 50 1032015 Library to inf
¢ FXAS21002CQ 2 36 24Au02015 Library to a¢
¢ FX0S87000Q g 34 0§Feb2017 Tt —
Ty PUS8TIQ 3 ENECE REVOLSIM 1 basic library for the PX0S8700Q combination
¢ spSfxl g 27 05 Mar 2012 Lascar Electi | accelerometer / magnetometer
AR -x0s570008 0 10 207802017 FX0557000)
< >
0 5 | & W 4 Pagel1 |of2 » M
Ready. NS |G| ®

Figure 5.10 The Import library wizard in "FRDM-K64F_FX0S8700Q" program page.

You will need to import a library called “FXOS8700Q":
https://os.mbed.com/teams/NXP/code/FXOS8700Q/
You can import it into your project by clicking the “Import!” button, and from the
“Libraries” tab, search for “FXOS8700Q’, then click “Import!” button on top right, as
illustrated in the screenshot in Figure 5.10.
In the “main.cpp’, the “I2C i2¢(PTE25, PTE24)” defines the I2C pins, as the
FXO0S8700Q sensor uses 12C for communications. There will be more details about 12C
next chapter. The “FXOS8700QAccelerometer acc(i2¢c, FXOS8700CQ_SLAVE_ADDRI1),”
create an variable acc to associate the onboard accelerometer with the 12C pins. The
“acc.enable();” enable the accelerometer, and the “acc.whoAmlI();” gives the information
about the accelerometer. The “acc.getAxis();” gets the accelerometer values of X, Y, and
Z axes.
The latest Arduino software (https://www.arduino.cc/en/Main/Software), version
1.6.8 or newer, has an interesting Serial Monitor tool and a Serial Plotter tool, that can
display and plot the three accelerometer values we send to the serial port. Figure 5.11
shows the screenshots of the values as well as plots using Arduino software.

https://os.mbed.com/teams/NXP/code/FXOS8700Q/
https://www.arduino.cc/en/Main/Software

Inputs and Outputs | 91

Apart from “acc.getAxis(),” you can also use “acc.getX(),” “acc.getY(),” and “acc.getZ()"
to get the accelerometer values of the X, Y, and Z axes, as shown in the next example.

€ coma - O X
| Send
0.1677£ -0.0156f -0.9260F -
0.1707f -0.0166f -0.9275F
0.1719f -0.0161f -0.9316£
0.1890£f -0.0334f -0.9028£
0.2646f -0.0154f 1.2100%
-0.2878f 0.0962f 0.9482F
-0.2007£ 0.8596f 0.2368%
0.7783f -0.0225f 0.5142%
0.0522f 0.0789E 0.9861%
0.0286f 0.0745f 1.0239%
0.0264f 0.0715f 1.0261f
0.0254f 0.0730£ 1.0259%
0.0232f 0.0723£ 1.0247%
0.0215f 0.0718£ 1.0249f
0.0212f 0.0706£ 1.0244%
w
[+ Autoseral BothML & CR + | [9600baud
€9 coma -] X
e [|

5.0

Figure 5.11 The Serial Monitor tool (top) and Serial Plotter tool (bottom) outputs in Arduino software.

92 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

R S S S R

// Example 5.20
#include "mbed.h"
#include "FX0S8700Q.h"

I2C i2c (PTE25, PTE24);
FX0S8700QAccelerometer acc(i2c, FX0S8700CQ SLAVE ADDR1) ;

int main (void)
motion data units_t acc_data;
float faX, fayY, faZ, tmp_ float;

acc.enable () ;

printf ("FXOS8700QAccelerometer Who Am I= %X\r\n", acc.whoAmI()) ;

while (true) ({
acc.getX (faX) ;
acc.getY (fay)
acc.getz(faz) ;
printf ("$1.4ff %$1.4ff %$1.4ff\r\n", faxX, fay, faz);
printf ("$1.4ff $1.4ff %$1.4ff\r\n", acc.getX(tmp float),

acc.getY (tmp float), acc.getZ(tmp float)) ;

wait (1.0f) ;

I

}

R S S S R S S

Instead of using unit-based results as shown in the previous two examples, you can
also use count-based results when getting the accelerometer values, as shown in the
next example.

R S S S R S S

// Example 5.21

#include "mbed.h"
#include "FX0S8700Q.h"

I2C i2c (PTE25, PTE24) ;
FX0S8700QAccelerometer acc(i2c, FX0S8700CQ SLAVE ADDR1) ;

int main(void)
motion data counts_t acc_raw;
intlé_t raX, ra¥, raZz, tmp_int;

Inputs and Outputs

acc.enable () ;
printf ("FX0S8700QAccelerometer Who Am I= $X\r\n", acc.whoAmI ());
while (true) ({
acc.getAxis (acc_raw) ;
printf ("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", acc_raw.x,
acc_raw.y, acc_raw.z);
acc.getX (raX) ;
)
)

7

acc.getY (ray

acc.getZ(raz

printf ("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", raX, ra¥, raZ);

printf ("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", acc.
getX(tmp int), acc.getY(tmp int), acc.getZ(tmp int));

wait (5.0f) ;

7

}
}

Rk b Ik b S R Rk kI R Rk R R I I R I R

Similarly, the following example illustrates how to get readings from a magnetometer
by using unit-based results.

Rk b Ik b S R Rk kI R Rk R R I I R I R

// Example 5.22

#include "mbed.h"
#include "FX0S8700Q.h"

Serial pc (USBTX, USBRX) ;
I2C i2c (PTE25, PTE24) ;
FX0S8700QMagnetometer mag(i2c, FX0S8700CQ SLAVE ADDRI1) ;

int main (void)

{

motion data units_t mag_data;

mag.enable () ;
printf ("FX0S8700QMagnetometer Who Am I= $X\r\n", mag.whoAmI ()) ;
while (true) {

// unit-based results

mag.getAxis (mag_data) ;

printf ("%$4.1ff %4.1ff %4.1ff\r\n", mag data.x, mag_

data.y, mag data.z);
wait (0.5f) ;

}

Rk bk b S Rk kS Rk R R I R A

93

94

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

& comd — O *
| Send
-220. .3f -109.8£ ()
-280. 28.5f -108.5f
-284. .5f -108.9f
-285. .0f -109.5f
-291. .0f -108.3f
-293. .9f -108.7f
-297 .3f -107.7%
-297. .0f -109.9%
-299. .5£ -108.1f
-299. .9f -109.6f
-296. .3f -108.3f
-295. .0f -109.
-295. .9 -108.
-295. .4 -108.
-295. .S£ -107.8f
W
Autoscroll BothNL &CR + |9600baud
€ com4 - O X
0.0 HEE
e U S
-200.0 -
r—’"'_'_‘l.-m—\-\-__
1 |""“_
J e
ot RS
-400.0

Figure 5.12 The Serial Monitor tool (top) and Serial Plotter tool (bottom) outputs in Arduino software.

Again, you can use Arduino software to show the values sent to serial port, and plot
them using Serial Plotter, as illustrated Figure 5.12.

Again, apart from “acc.getAxis(),” you can also use “acc.getX(),” “acc.getY(),” and
“acc.getZ()” to get the accelerometer values of X, Y, and Z axes, as shown in the next
example.

Inputs and Outputs

R b S S S O R S S

// Example 5.23

#include "mbed.h"
#include "FX0S8700Q.h"

Serial pc (USBTX, USBRX) ;
I2C i2c (PTE25, PTE24);
FX0S8700QMagnetometer mag(i2c, FXOSS7OOCQ_SLAVE_ADDR1);

int main (void)
motion data units_t mag_data;
float fmX, fmY, fmZ, tmp_ float;

mag.enable () ;
printf ("FX0S87000Magnetometer Who Am I= $X\r\n", mag.whoAmI ()) ;
while (true) {
// unit-based results
mag.getAxis (mag_data) ;
printf ("MAG: X=%4.1ff Y=%4.1ff z=%4.1ff\r\n",
mag data.x, mag data.y, mag_data.z);
mag.getX (fmX) ;
mag.getY (fmY) ;
mag.getZ (fmZz)
printf ("MAG: X=%4.1ff Y=%4.1ff Z=%4.1ff\r\n", fmX, fmy, fmZ);
printf ("MAG: X=%4.1ff Y=%4.1ff Z=%4.1ff\r\n", mag.
getX(tmp float), mag.getY(tmp float), mag.getZ(tmp float)) ;
wait (5.0f) ;

7

}

Rk b Sk S R S S

Following is the same example, but using count-based results.

Rk b Sk S R S S

// Example 5.24

#include "mbed.h"
#include "FX0S8700Q.h"

Serial pc (USBTX, USBRX) ;
I2C i2c (PTE25, PTE24) ;
FX0S8700QMagnetometer mag(i2c, FXOSS7OOCQ_SLAVE_ADDR1);

95

™

96 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed

int main(void)
motion data counts t mag raw;
intlé_t rmX, rmY, rmZ, tmp_int;

mag.enable () ;
printf ("FX0S8700QMagnetometer Who Am I= $X\r\n", mag.whoAmI ()) ;
while (true) {

mag.getAxis (mag_raw) ;
printf ("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", mag raw.x, mag_
raw.y, mag raw.z);
mag.getX (rmX) ;
)

(

mag.getY (rmY) ;

mag.getZ (rmZ) ;

printf ("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", rmX, rmY, rmZ);

printf ("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", mag.getX(tmp int),
mag.getY (tmp int), mag.getZ(tmp int));

wait (5.0f) ;

}

}

Rk b Ik I R R kR kR o R Rk b ik

Exercise 5.9

Modify the above program so that it can read both the accelerometer and the mag-
netometer values.

NXP LPC1768 development does not include an onboard accelerometer or mag-
netometer, so this section’s code is not applicable to NXP LPC1768.

Further Information about Accelerometer and Magnetometer Sensors

https://os.mbed.com/teams/NXP/code/FXOS8700Q/

5.5 SD Card

FRDM-K64F board has an onboard SD card socket. To use an SD card, from the online
compiler, create a new project, call it “FRDM-K64F_SDCard,” and change the “main.
cpp” content as shown. You will need to import a library called “SDFileSystem”:
https://os.mbed.com/users/mbed_official/code/SDFileSystem/

You can import it into your project, by clicking the “Import” button, and from the
“Libraries” tab, search for “SD card,’ as illustrated in Figure 5.13.

https://os.mbed.com/teams/NXP/code/FXOS8700Q/
https://os.mbed.com/users/mbed_official/code/SDFileSystem/

Inputs and Outputs

e - o X
B Firmware LPC1768 1PC1 x /'] Mbed Compiler Import | X
<& C | @ Secure | httpsy/os mbed.com/compiler/#nav @ |
Save Save Al | (] Compile v | @ Commit v (& Revision | « | & N | [Help FRDM-K64F 4
Program Workspace < | ImportWwizard Published Library Details
B [My Programs Import a library from os.mbed.com Name SDFileSystem
FRDM-K64F-Flashled e, N o Author Neil Thiessen
- _ Select library from the list. You can also drag&drop them in your workspace.
RDM-K64F_Digitalin mbed T oy import from URL. Published 29.2u12014
Fl -_spcard LastUpdated ~ 29.Aug.2016
. ¥ —
B MONGDT o s | somated | ot | mpors oz
(&5 mbed Forks 2
Listing published libraries on os.mbed.com matching "SD card” Commits 27
Name Tags Author Imports | Modified Descriptior | Dependents
= = Dependencies
[« soriespien ———iensin M 50 Gard i sy |~ o1 _|zo gz 5
' USBMSD_SD San ran 745 21302013 USBMSD ex:
% ChaNFssD NES S 543 OLFeh2011 Thisis a lib{ € Apache 2 License
¥ SDFileSystem 184 29Mar2017 Library for § —
' USBSDFileSystem 164 27.A49.2013 Using the U &9 Library Homepage
e libpff 86 09May2014 Lightweight | | Tags
5 SDFlashDisk 75 2Lun2013 Block access SD Card Sl
Y SD_DISCO_F469NI 64 17.May.2017 I use
' SD_PlayerSkeleton 45 23Mer2017 Ubrary for S | peciprion
% TCC_MCsA 40 24Aug2016 Serial Comm
A re-written SDFileSystem library with
¢ ConfigFile 20 15502010 Library to te | improved compatibility, CRC support, and card
J servoRingBuffer 11 29ApL201S Customring | "emoval/replacement support.
< >
G 5| B[4 4 Pagelt Jof2 » M
Ready. INs | | %y

Figure 5.13 The Import Wizard for “SDFileSystem” library.

The following example shows how to write to an SD card, as shown in Figure 5.14. If
you have ever written file read and write code in C Language, you will find the syntax is
almost identical. The “SDFileSystem sd(PTE3, PTE1, PTE2, PTE4, “sd”);” line specifies
microcontroller pins that are connected to SD card module; in this case, they are SPI
(Serial Peripheral Interface Bus) pins. We will cover SPI interface in greater detail in

B Firmvore L1768 15C1 x /[Mbed Compiler FROM- x

<« = ‘ @ Secure | https;//os.mbed.com/compiler/#nav:/FRDM-K64F_SDCard/main.cpp; Q w\ g

/FRDM-Ké4F_SDCard/main.cpp

7 New v B mmport | |l save [saveAll | (¥ compile v | @ Commit v (9 Revison | < o« | @h | &3 | N\ | (L] Help FROM-KS4F
Program Workspace <
& [F My Programs -
RDM-K64F-Flashied
RDM-K64F_Digitalln
S 17 FROM K64F_SDCard °rEl, PTE2, PTE4, "=d"); // MOSI, MISO, SCK, CS
[c) main.cpp *
(&) mbed
B
. sizeof(char), 256,
from file: %s \n", size,
~
Compile output for program: FRDM-K64F_SDCard () verbose | Emors:0 | Wamings:0 | Infos: 0
Description Error Number | Resource In Folder Location
< 5| | Compile Output | Find Results | Notifications v
Ready. In22 col 1 2 |Ins B %y

Figure 5.14 The “FRDM-K64F_SDCard" program page.

97

98

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Chapter 6. “FILE *fp;” defines a file handler pointer. “fp = fopen(“/sd/test.txt; “w”);” tries
to open the file “test.txt” on SD card for writing purpose (“w”). If it opens successfully,
it will write “Hello World” to the file, and if not, it won’t do anything.

The following example shows how to read from SD card. In this example, a character
buffer of 256 bytes is used to read from the file.

R IRk ki ki ki Rk ki

// Example 5.25

#include "mbed.h"
#include "SDFileSystem.h"

SDFileSystem sd(PTE3, PTEl, PTE2, PTE4, "sd"); // MOSI, MISO, SCK, CS
FILE *fp;

char buffer[256];

int main()
fp = fopen("/sd/test.txt", "r");
if (fp != NULL) {
int size = fread(buffer, sizeof (char), 256, fp);
printf ("Size: %d, text from file: %s \n", size, buffer);
fclose (fp) ;

}

R IR Ik ki ki kR ik ki ko

Exercise 5.10

Modify the above program so that it will read the content from a file and copy the con-
tent to another file.

Please note that NXP LPC1768 development board does not have an onboard SD
card socket. To save the data, you can use its local file systems. For more information,
see the following section.

Further Information about the SD System

https://os.mbed.com/cookbook/SD-Card-File-System
https://os.mbed.com/teams/NXP/code/FRDMK64_SDCard/?platform=FRDM-K64F
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/storage/filesystem/

https://os.mbed.com/cookbook/SD-Card-File-System
https://os.mbed.com/teams/NXP/code/FRDMK64_SDCard/?platform=FRDM-K64F
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/storage/filesystem/

Inputs and Outputs

5.6 Local File System (LPC1768)

With mbed NXP LPC1768 and LPC11U24, you can save data files to a specific area of
flash memory installed on the mbed. This is the area you can see from mbed USB drive
on your computer. Following is a simple example to write to a text file in the local file
system and to read from it. The “LocalFileSystem local(“local”)” declaration defines the

X9

local file system. The “FILE* fp1 = fopen(“/local/log.txt’'w”)” opens the “log.txt” file for
writing purpose (“w”), and similarly, the “FILE* fp2 = fopen("/local/log.txt","r")” opens
the file for reading purpose (“r”). The “fclose()” closes the file. The “fputs()” writes text

to the file, and the “fgets()” reads from the file.

Rk Sk b Sk R RO S ki kR R R S R R Ik b Sk S R

// Example 5.26

#include "mbed.h"

Serial pc (USBTX, USBRX) ;

LocalFileSystem local ("local");

char rs[256];

int main ()

{
FILE* fpl = fopen("/local/log.txt","w");
fputs ("Hello World", £fpl);
fclose (fpl) ;

FILE* fp2 = fopen ("/local/log.txt","r");
fgets(rs, 256, fp2) ;

fclose (fp2) ;

pc.printf ("text data: %s \n\r",rs);

}

Rk b Sk R R S i ki kR R R R b R R b S b kR

Following is an example program that reads analog input AO (or P19 for LPC1768) for
10 times and saves it to a log file. It also uses a Timer to record the time lapsed. In this
example, we use “FILE* fp = fopen(“/local/log.txt] @”)” to append to the file (“a”), as
writing to file (“w”) will overwrite the existing file content.

Please be aware that when the microcontroller is reading or writing to a file, LPC1768
will be marked as “removed” on the host computer. This is normal, and it will reappear

when all file handles are closed or the microcontroller program exits.

929

100

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

R S S S R

// Example 5.27
#include "mbed.h"

#if defined (TARGET K64F)
Analogln ain (A0) ;

#elif defined (TARGET LPC1768)
Analogln ain (pl9) ;

#endif

Timer t;
LocalFileSystem local ("local™"); // define local file system
int main()
t.start () ; // start the timer
for (int 1=0;1<10;1i++)
{
FILE* fp = fopen ("/local/log.txt","a");
fprintf (fp, "time=%.3fs: Ain =%.3f \n\r",t.read(),ain.read());
fclose (fp) ; // close file
wait (1) ;

}

R S S S R S S

Further Information about the Local File System

https://os.mbed.com/handbook/LocalFileSystem
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_memory_and_data.pdf

5.7 Interrupts

Interrupt is a very useful way to trigger an event according to the change of an input.
Computer mouse and keyboard typically use interrupt to work. To use interrupts,
from the online compiler, create a new project, call it “FRDM-K64F_Interrupts” and
change the “main.cpp” content as shown. The “Interruptin button(sw2);” define Switch 2
as interrupt input. The “flip()” function flips the LED1 on and off. The “button.
rise(&flip);” attached the “flip()” function address to the rising edge of Switch 2 but-
ton. So the program will do nothing most of the time, until you press the Switch 2
button, which will switch the LED1 (red color) one and off. Because the interrupt is
handled by the microcontroller automatically, so you don’t need to put “button.
rise(&flip);” into the while loop.

https://os.mbed.com/handbook/LocalFileSystem
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_memory_and_data.pdf

Inputs and Outputs

Rk b S b S O I S S O R S S

// Example 5.28
#include "mbed.h"

InterruptIn button (sw2) ;
DigitalOut led(LED1) ;

void flip() {
led = !led;
}

int main()
button.rise(&flip) ;
while (1) ;

}

Rk b S S S O I S S S R S S S S

Exercise 5.11

Modify the above program so that it uses two switches and two LEDs such that when
you press Switch 2, it flips the green LED and when you press Switch 3 it flips
blue LED.

Further Information about Interrupts

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/io/Interruptin/

5.8 Summary

This chapter introduces the inputs and outputs of FRDM-K64F development board,
which includes digital inputs and outputs, bus inputs and outputs, analog inputs and
outputs, PWM, six-axis combo accelerometer and magnetometer sensor, SD card, local
file system (LPC1768), and interrupts.

101

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/io/InterruptIn/

6

Digital Interfaces

The best preparation for tomorrow is doing your best today.
- H. Jackson Brown Jr.

Digital interfaces are used by microcontrollers to communicate directly with other
devices.

6.1 Serial

Serial interface is one of the most commonly used and most popular communication
interfaces, due to its simplicity and easiness to use. Serial interface uses two pins to
communicate, Rx and Tx, for receiving data and for transmitting data, respectively.
The default setting for serial interface is, baud rate: 9600; data bits: 8; stop bits: 1; and
parity: no (9600-8-N-1).

To use serial interface, from the mbed online compiler, create a new project, call
it “PFRDM-K64F_Serial’, and change the “main.cpp” content as shown. The “Serial
pc(USBTX, USBRX);” specifies the microcontroller to PC serial communication using
standard USBTX and USBRX pins. The “pc.printf(“Hello World\n”);” will send “Hello
World” to computer using serial port.

Rk bk S R R kR Sk S I R R S b i S S Rk o

// Example 6.1
#include "mbed.h"
Serial pc (USBTX, USBRX) ;

int main()
pc.printf ("Hello World\n") ;
while (1) ;

}

Rk bk b R R R kR Sk R R b i S S I I

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

103

104

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

As we saw in the last chapter, the “printf()” also sends the information to com-
puter serial port; therefore, the following example will work exactly same as the
above code.

R IRk ki ki kS E E E E E E E E E E E E E E E k E

// Example 6.2
#include "mbed.h"

int main() {
printf ("Hello World\n") ;
while (1) ;

}

R R IRk ki kR Rk ki ki

You can use “pc.getc()” to read a character from a computer serial port, and use
“pc.putc()” to write a character-to-computer serial port. The following example will

read a character from computer and echo it back, as long as there is something readable
(pc.readable()).

R R IRk ki ki ki

// Example 6.3
#include "mbed.h"
Serial pc (USBTX, USBRX) ;

int main() {
while (1) {
if (pc.readable()) {
pc.putc (pc.getc()) ;
}

}

R IRk ki ki ki ko

Exercise 6.1

Modify the above program so that it can read lowercase characters from a computer
serial port, convert them to uppercase, and echo them back.

You can also use “gets()” function to read a number of characters from a computer
serial port. The following example reads maximally 256 characters each time. To make
“gets()” work efficiently, it is important to configure your terminal software (Tera Term,
putty.exe, Arduino serial monitor etc.) to transmit the data ending with a “\n” (NL, new

Digital Interfaces

line) character. In this way, “gets()” will be able to read variable length of data, as it will
stop whenever it reads a “\n”. See Chapter 5, section 5.2.2, for Tera Term terminal
configuration.

R R S kR R ok ko

// Example 6.4
#include "mbed.h"
Serial pc (USBTX, USBRX) ;

int main() {
while (1) {
if (pc.readable())
char buff [256];
pc.gets (buff, 256);
pc.printf ("$s\n\r", buff);

}

R R Sk Rk ko

If the incoming data contains integer, float, or double numbers, you can also use
the “sscanf()” function to extract the numbers out. The following example shows
how to read three float numbers from a computer serial port; the numbers are
separated by |.

R R R S kR R ok ko

// Example 6.5
#include "mbed.h"
Serial pc (USBTX, USBRX) ;

int main() {
float re[3]={1.0,0.0,0.0};
while (1) {
if (pc.readable()) {
char buff [256]="";
pc.gets (buff, 256);
pc.printf ("$s\n\r", buff);
sscanf (buff,"$f|%f|%£",&rel0],&re[1],&rel2]);

}

pc.printf ("$10.3£\t%10.3£\t%10.3f\n\r", re[0],re[l],re(2]);

}

R R i kS R Rk

105

106

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 6.2

Modify the above program so that it can read three integer numbers from computer

»

serial port; numbers are separated by “,”.

Apart from communicating with the computer, you can also communicate with other
devices using a serial port. The following example uses D4 and D5 pins as a serial inter-
face, and sends “Hello World” to the interface. In this case, the baud rate used is 115,200.

Rk b ok S R R R R R kR R o S R

// Example 6.6
#include "mbed.h"
Serial dev (D4, D5);

int main()
dev.baud (115200) ;
dev.printf ("Hello World\n") ;

}

Rk b kS R R R R R o R o O R i R

Exercise 6.3

Modify the above program so that it can read characters from a computer serial port,
send them to the device serial interface (D4, D5), and vice versa.

Exercise 6.4

Modify the above program so that it can communicate with another FRDM-K64F board
(or LPC1768 board) through a serial interface (D4, D5).

Further Information about Serial Interface

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/interfaces/digital/
Serial/

6.2 SPI

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication inter-
face specification used for short-distance communication, primarily in embedded sys-
tems. The interface was developed by Motorola and has become a de facto standard.
Typical applications include Secure Digital (SD) cards and liquid crystal displays (LCD).

SPI devices communicate in full duplex mode using a master—slave architecture with
a single master. The master device originates the frame for reading and writing. Multiple

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/Serial/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/Serial/

Digital Interfaces

SCLK P SCLK
MOSI > MOSI SPI
SPI MISO |« MISO Slave
Master Ss1 » SS
552
5_53 -
» SCLK
» MOSI SPI
MISO Slave
» 55
» SCLK
» MOSI SPI
MISO Slave
»{ S5

Figure 6.1 The SPI communication protocol. (Source: https://en.wikipedia.org/wiki/Serial_Peripheral _
Interface_Bus#/media/File:SPI_three_slaves.svg)

slave devices are supported through selection with individual slave select (SS) lines, as
shown in Figure 6.1.

To use an SPI interface, you will need two devices, one as the master and one as the
slave. In this example, we will use a FRDM-K64F board as the master, and a LPC1768
board as the slave.

For the master, from the online compiler, create a new project; call it “FRDM-K64F _
SPI” and change the “main.cpp” content as shown.

Rk b Sk S S O R S S R

// Example 6.7
#include "mbed.h"

SPI spi (PTD2, PTD3, PTD1l); // mosi, miso, sclk
DigitalOut cs (PTDO) ;

{

int main()
cs = 1;

spi.format (8,3);
spi.frequency (1000000) ;

spi.write (0x8F) ;
int whoami = spi.write(0x00) ;

printf ("WHOAMI register = 0x%X\n", whoami) ;

}

R S S S S S S R S S S

107

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#/media/File:SPI_three_slaves.svg
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#/media/File:SPI_three_slaves.svg

108

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

For the slave, from the online compiler, create a new project; call it “LPC1768_
SPISlave” and change the “main.cpp” content as shown.

R R IRk ki ki kS ko kS E E E E E E E E E k E

// Example 6.8
#include "mbed.h"
SPISlave device(p5, p6, p7, p8); // mosi, miso, sclk, ssel

int main() {

device.reply (0x00) ; // Prime SPI with first reply
while (1) {
if (device.receive()) {
int v = device.read(); // Read byte from master
v = (v + 1) % 0x100; // Add one to it, modulo 256
device.reply (v) ; // Make this the next reply
}
}

}

R IR Ik ki i ki kR Rk kI ki

Exercise 6.5

Modify the above two programs so that the SPI server can read the digital input pin DO
and send a value to SPI clients.

Further Information about SPI Interface:

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/
digital/SP1/

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/interfaces/digital/
SPISlave/

6.3 12C

The I2C (Inter-Integrated Circuit) is a multi-master, multi-slave, single-ended, serial
computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is
typically used for attaching lower-speed peripheral ICs to processors and microcon-
trollers in short-distance, intra-board communication. I2C uses only two bidirectional
open-drain lines, serial data acquisition (SDA) and serial clock line (SCL), pulled up
with resistors. Typical voltages used are +5 V or +3.3 V, although systems with other
voltages are permitted, as shown in Figure 6.2.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPI/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPI/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPISlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPISlave/

Digital Interfaces

: LR — son
1T 1T 1T T SCL
uc || Apc || pac || pc

Master || Slave || Slave || Slave

Figure 6.2 The I2C communication protocol. (Source: https://en.wikipedia.org/wiki/I%C2%B2C#/
media/File:[2C.svg)

To use the 12C interface, you will need two devices, one as the master and one as the
slave. In this example, we will use a FRDM-K64F board as the master and an LPC1768
board as the slave.

For the master, from the online compiler, create a new project; call it “FRDM-K64F _
12C” and change the “main.cpp” content as shown.

EE R S S S R S

// Example 6.9

#include "mbed.h"

// Read temperature from LM75BD

I2C i2c (PTD25, PTD24) ; //SDA and SCL
const int addr = 0x90;

int main()
char cmd[2] ;
while (1) {
cmd [0] = 0x01;
cmd [1] = 0x00;
i2c.write (addr, cmd, 2);

wait (0.5);

cmd [0] = 0x00;
i2c.write(addr, cmd, 1);
i2c.read(addr, cmd, 2);

float tmp = (float ((cmd[0]<8) |cmd[1]) / 256.0);
printf ("Temp = %.2f\n", tmp);

}

EE S S I S S R S

109

110 | Designing Embedded Systems and the Internet of Things (1oT) with the ARM® Mbed"™

For the slave, from the online compiler, create a new project; call it “LPC1768_
SPISlave” and change the “main.cpp” content as shown.

R R IRk ki ki kS ko kS E E E E E E E E E k E

// Example 6.10
#include <mbed.h>
I2CSlave slave(p9, plo0);

int main()
char buf [10];
char msg[] = "Slave!";

slave.address (0xA0Q) ;
while (1) {
int i = slave.receive() ;
switch (i) {
case I2CSlave::ReadAddressed:
slave.write (msg, strlen(msg) + 1); // Includes null char
break;
case I2CSlave::WriteGeneral:
slave.read(buf, 10);
printf ("Read G: %s\n", buf);
break;
case I2CSlave::WriteAddressed:
slave.read(buf, 10);
printf ("Read A: %s\n", buf);
break;

}

for(int 1 = 0; 1 < 10; i++) buf[i] = 0; // Clear buffer

}

R IR Ik ki ki ki ki Rk ki ko

Exercise 6.6
Modify the above two programs so that the I2C server can send 10 data to 12C clients.

Further Information about 12C Interface:

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/
digital/I12C/

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2C/

Digital Interfaces

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/
12CSlave/

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/
digital/I2C/

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/interfaces/digital/
12CSlave/

6.4 CAN

CAN or controller area network is a bus standard that allows microcontrollers and
devices to communicate with each other without going through a host computer. It is a
message-based protocol, designed originally for multiplex electrical wiring within auto-
mobiles, but is also used in many other contexts. Development of the CAN bus started
in 1983 at Robert Bosch GmbH.

CAN is a multi-master serial bus standard for connecting electronic control units
[ECUs] also known as nodes. Two or more nodes are required on the CAN network
to communicate. The complexity of the node can range from a simple 1/O device up
to an embedded computer with a CAN interface and sophisticated software. The
node may also be a gateway allowing a standard computer to communicate over a
USB or Ethernet port to the devices on a CAN network. All nodes are connected to
each other through a two-wire bus. The wires are 120 Q nominal twisted pair, as
shown in Figure 6.3.

The following example sends a counter from one CAN bus (canl) and listens for a
packet on the other CAN bus (can2). Each bus controller should be connected to a CAN
bus transceiver. These should be connected together at a CAN bus. In this example, the
Ticker interface is used to set up a recurring interrupt to repeatedly call the “send()”
function at a specified rate. More details about the Ticker interface can be found in
Chapter 9, section 9.2.

IS0 11898-2 Newock

Figure 6.3 The CAN communication protocol. (Source: https://en.wikipedia.org/wiki/CAN_bus#/
media/File:CAN_ISO11898-2_Network.png)

111

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2CSlave/
https://en.wikipedia.org/wiki/CAN_bus#/media/File:CAN_ISO11898-2_Network.png
https://en.wikipedia.org/wiki/CAN_bus#/media/File:CAN_ISO11898-2_Network.png

112

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 6.11
#include "mbed.h"

Ticker ticker;
DigitalOut ledl (LED1) ;
DigitalOut led2 (LED2) ;
CAN canl (p9, plO0);

CAN can2 (p30, p29);
char counter = 0;

void send() {
printf ("send () \n") ;
if (canl.write (CANMessage (1337, &counter;, 1))) {
printf ("wloop () \n") ;
counter++;
printf ("Message sent: %d\n", counter);

}

ledl = !ledl;

int main()
printf ("main () \n") ;
ticker.attach(&send;, 1);
CANMessage msg;

while (1) {
printf ("loop () \n") ;
if (can2.read (msg))
printf ("Message received: %d\n", msg.datal[0]);
led2 = !led2;

}

wait (0.2) ;
PR R R R R E R E R EREEEEEEEEEEREEEEEEEE R LR E RS R EEEEEEEE RS RS RS EEEE RS
.
Exercise 6.7

Modify the above program so that it reads the analog pin A0, and sends the value
to CAN1.

Digital Interfaces | 113

Further Information about the CAN Interface:

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/
digital/CAN/
6.5 Summary

This chapter introduces digital interfaces, such as serial, SPI, I2C, and CAN, which are
used by microcontrollers to communicate directly with other devices.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/CAN/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/CAN/

115

7

Networking and Communications

I never did a day’s work in my life. It was all fun.
- Thomas A. Edison

7.1 Ethernet

The FRDM-K64F development board comes with an onboard Ethernet socket. So the
simplest way to connect to the Internet is through the Ethernet.

From the Arm® Mbed™ online compiler, create a new program “FRDM-F64F_
NetworklInfo” (Figure 7.1). Copy the following code into “main.cpp.”

Rk b S S S O R S S

// Example 7.1

#include "mbed.h"
#include "EthernetInterface.h"
#include "rtos.h"

EthernetInterface eth;

int main()

{
eth.init () ;
eth.connect () ;
printf (" IP address: %$s \r\n",eth.getIPAddress()) ;
printf (" Network Mask: %$s \r\n",eth.getNetworkMask()) ;
printf (" MAC address: %s \r\n",eth.getMACAddress()) ;
printf (" Gateway address: %$s \r\n",eth.getGateway()) ;

while (1) {},

}

Rk b S S O R S R S S

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

116

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

W Frmware LPCITESLPC! % ;' [Mbed Compiler FROA- X

<« © | @ Secure | hitps/os.mbed.com, " 1-F 64 _MNetw, ’ @ & i

Mbed JFRDM-F&4F_Networkinfo/main.cpp

Fyvew v Pyimpon | [sove IE) sovemn () compile v @ commt v (D Rewson |« oo B B\ [Linep FROM-KESF b

Program Workspace < [sacyy
= [my Programs -
= [FROM-Fo4F_Network #ina B
=] maln.cpp*
) mbed
[FROM-KE4F-Fashied
[FROM-KB4F_Digialin

n®, eth.getIrAddress ()} ;
n*, e

-

, put for program: Verbose | Eeors:0 | Wamings:0 | Tnfos: 0

Description Error Number Resource In Folder Location

< » | Compile Quiput | Find Resulls | Nolfications w

Raady. n1s ol 87 ms (B R

Figure 7.1 The Ethernetinterface program.

This example illustrates how to initialize the Ethernet, connect the Ethernet, and get
network information such as IP address, subnet mask, MAC address, and gateway
address.

In this program, you will need to import two libraries:

1) “Ethernetinterface” library (https://os.mbed.com/users/mbed_official/code/
EthernetInterface/)
2) “mbed-rtos” library (https://os.mbed.com/users/mbed_official/code/mbed-rtos/)

To import a library into a program, just click the “Import” button on top of the
online compiler. Search for “Ethernetinterface” library and click the “Import!” button
(Figure 7.2). A pop-up confirmation window will appear. Make sure all the information
is correct, then click the “Import!” button (Figure 7.3). Figure 7.4 shows how to search
and import “mbed-rtos” library. More details about import and export libraries and
programs will be available in Chapter 10.

Please note that as of this writing, there are two compilation errors in the latest
“Ethernetlnterface” library (revision 54:183490eblb4a, 14 Jan 2017), as shown in
Figure 7.5.

Just comment out the two lines to solve the errors (Figure 7.6).

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

Networking and Communications | 117

n T x @ ®
< C | @ Secure | hitpss/onmbed.com/co

Mbed Impert Wizard

DN&” Ll sove Bl s il (5] Comple v | @ Commit v () Revisn | 0 o 5 | [e

Program Warkspace 4 Import Wizard
Egévm G 1mort s brary from os.mbed.com
| T bt on e e s o e
® [FROM-K4F-Flashied f T
“‘-E - Progrins | Lbeariet | Bookmarked | Upload | |Ethemattntarface

Listing published Mbraries on os.mbed.com matching “EthernetInterface”
Imgarts | Madifiec

IHame: Tags Austhor Desaigtcr
| [epernetintedoce_Jetben ipmbed ____[besdoffial | 21473 J1iMay 2016 [mbest Pl
o Emernetietlf 5 4518 05 Dec 2010
F 6F 35 heov 2004 A e cbjes
502 05 Jun 2012
I 2R 24 New T
20 ZBE2US Ipc1768
I QLDRC 2015 Exharnatn t -
25 1anevand Ethemnetiiet!
s Ens L —
181 1630 2014 A PicaTCP dh - v
155 25 My 202 Exharrat Nl
16 25 May 2012 LwIP with FE
< 3
< 5 B8 W 4 pgeflt | o3 b M
Ready. ms (| B

Figure 7.2 Import“Ethernetinterface” library into the program.

Apes v iy wart X

& O | @ Secure | hitps//osmbedoom/compiler/ #ravFROM-FE64F_Networkinfo/main cpprpanelimport_wizard:

Import Library
Impet & library from os.mibed.com into & program in your
Warkspace.

Figure 7.3 Import Library pop-up window.

118

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

|] vox @ ot X
« @ | @ Secure | hitps//osmbed com, 64F_Netwarkinka/maincpprpaneking a@ fr
Mbed Import Wizard
ﬂuuv@ bl e L) S st | [¥] Complle v | O Commit v (D Revison |« cx By 0 s | ([l Hee FROMAGAF @
Program Workspace € Import Wizard

=

Import a library from os.mbed.com

EI i
FROM-KE4F-Fashled 1 I rtes
Libraries {
E 3 Programs Bookmarked | Upload
Listing publiched libraries en os.mbed.com matching “rtos”
Pame 1ag Author 1mports | Moded
g mbed-TE= cmsis s BT mbed offiisl 46211 04 Jul 2017

SEEEE b st £ Apache 2 Ucerse

This 15 2 per

Official
IEE config based an the RTY impiementation of the
- POSIX et | CMSIS-RTOS APT open standard.

1y bepton T2

< 5 B M 4 mge[s Jo7 b M

Figure 7.4 Import“mbed-rtos”library into the program.

[] tox /@ FFRON-| X
€ | @ Secure | hitps:/josmbedcom compik

64F_Networkinfo/mbed-tos/Ethemetinterface/bwip-eth/arch/TARGET Freescale/bdf_emac.c @

/FRDM-F 64F_Metworkinfo/mbed-rtos/Ethernetinterface/Iwip-eth/arch/TARGET_Freescale/kb4f_emac.c

Prmew v Py import | L s I Sove a0 | (5] Comple v | @ Commit v (D Revison | 0 oo | 8 | N | [l ke FROM-KESF
Lo I € |) mancop x | [7) keet_emacc
& [my Programs i I
= [FROM-FESF Nesworkinfo Trsl b= ENET_BUPFDESCRIPIOR_RX_WRAY_MASK:
- i
E "; s th the empty flag. */
® G g _handl mresl |= EZNEZT_BUT _PI_EMPTY_MASK:
(i Ethernetinterface Increases the buffer descriptor to the next one. */
®] classes a1 & ENET] _BX_WRAF_MAIF] {
T wip Al - g_handl
S wipeth - 4l irey = g_handl
S arch
= D THRGET_Freescale g handle.ruBdlurrent=;
e & &3 g_bhandle zxBaDizey+s:
hardware irt_MKE4FLL. ;
kbal_emacc
o] k6 _emar_config h) /+ Actives the receive buffer desoriptor.
5 wipopes_conf.h ENET->RE0AR ® ENET_RIAR_RDAR_MASE!
@ (L) TARGET_powP 1} =
(L] TARGET_RZ_AMH < >
= L) TARGET_STM
@I TARGET_VK_RZ_AIH
B wpsys
) socket
[s) eth_archh

Raady. ws || 8y

Figure 7.5 The compilation errors in the “Ethernetinterface” library.

Networking and Communications

W Frmware LPOITER LRS! x / [] Mibed Compiler /FRDA- | 0

| € Q| @ Secure | hitps://os.mbed com

(5] Complle ~» & Commit v (DRevison 1 oo B BEn | N [Linep FROM-KEF g

(1) main.cop x | [¢] kel _emace x

Compile output for program: FROM-FE4F_Networklnfo Vebose | Emorc0 | Wamigs0 | Iefos:]

Description Ercr Number | Resource In Foider Location
& Success!
- < ¥
[e] Exhemetintedace.cpp
[v | Compile Output | Find Results | Notifications: w

[n) Ethemetinterface.n
ngs clll | 64 | N5 ([B

Ready.

FRDM-PEE Netwa b, A

Figure 7.6 The correction of compilation errors by commenting out the two lines in the
“Ethernetinterface” library.

Further Information about Ethernet

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/communication/
ethernet/

7.2 Ethernet Web Client and Web Server

World Wide Web is still the most important application on the Internet. With an
Ethernet socket, it is easy to turn an FRDM-K64F board into a web client or a web
server. Following is a quick example of a simple Ethernet HTTP (hyper text transfer
protocol) client, i.e., web client, program. It connects to the website www.google.co.uk,
thenretrieves the web page information. Again, you will need both the “Ethernetinterface”
library and “rmbed-rtos” library.

119

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/ethernet/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/ethernet/
http://www.google.co.uk

120

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 7.2

#include "mbed.h"
#include "EthernetInterface.h"

EthernetInterface eth;
TCPSocketConnection sock;

int main() {
eth.init () ;
eth.connect () ;
printf ("IP Address is %s\n", eth.getIPAddress());

sock.connect ("www.google.co.uk", 80);

char request[] = "GET / HTTP/1.0\n\n";
sock.send _all (request, sizeof (request)-1);

char buffer[1024];

int ret;
while (true) {
ret = sock.receive (buffer, sizeof (buffer)-1);
if (ret <= 0)
break;
buffer[ret] = ’'\0’;

printf ("Received %d chars from server:\n%s\n", ret, buffer);

sock.close() ;
eth.disconnect () ;

while (1) {}

}

R S S I R S S

Following is a simple HT TP server, i.e., web server, which reads the analog input A0
(or P19 for LPC1768) and prints its value to the client. Figure 7.7 shows the web browser
display of the server.

Networking and Communications | 121

R b S S S O R S S

// Example 7.3

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 80
EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

#if defined (TARGET_K64F)
Analogln ain (A0) ;

#elif defined (TARGET_LPC1768)
Analogln ain(pl9) ;

#endif

int main ()

{

eth.init () ;
eth.connect () ;
printf (" IP address: %s \r\n",eth.getIPAddress()) ;

server.bind (PORT) ;
server.listen() ;

while (true) {
int32 t status = server.accept (client);

if (status>=0)
{
char msg[1024] = {};
sprintf (msg, "A0 = %0.1f \n\r\n\r", (float) ain.read());
client.send(msg, strlen(msg)) ;
client.close() ;

}

Rk b Sk S R S S

122

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

] mied Compier TROM. %

ITEER]

. ol C @ 1M148.062

3 Qf|m 1

Figure 7.7 The web browser display.

Following

is a slightly complicated version HT TP server, which uses a function “web_

server()” to provide web information. The “web_server()” function sets up the HTTP
server, accepts the HTTP client connection, prints the data sent by the client, and prints
the analog input A0 value (or P19 for LPC1768) in a HTML format, including header
and body, to the client.

R R Rk kR Rk kR ki

// Example 7.4

#include
#include
#include
#include
#include

"mbed.h"
"EthernetInterface.h"
<stdio.h>

<string.h>

"rtos.h"

#define PORT 80

EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

#if defined (TARGET_K64F)
AnalogIn ain (AO0) ;

#elif defined (TARGET LPC1768)
AnalogIn ain(pl9) ;

#endif

Networking and Communications

void web_ server (void const *args)
server.bind (PORT) ;
server.listen() ;

while (true) {
int32 t status = server.accept (client);

if (status>=0)
{
char buffer[1024] = {};
int n= client.receive (buffer, 1023);
printf ("Received Data:
$d\n\r\n\r%.*s\n\r",strlen (buffer),strlen(buffer),h buffer);
char Body[1024] = {};
sprintf (Body, "<html><title></title><body><hl1>A0=%0.1f
</hl></body></html>\n\r\n\r", (float) ain.read()) ;
char Header[256] = {};
sprintf (Header, "HTTP/1.1 200 OK\n\rContent-Length:
$d\n\rContent-Type: text/html\n\rConnection:
Keep-Alive\n\r\n\r", strlen (Body)) ;
client.send (Header, strlen (Header)) ;
client.send (Body, strlen(Body)) ;

client.close() ;

1
int main() {
EthernetInterface eth;
eth.init () ;
eth.connect () ;
printf ("\r\nServer IP Address is %$s\r\n", eth.getIPAddress()) ;

web_server ("") ;
while (1) {}

}

Rk bk b S Rk kS Rk R R I R A

Exercise 7.1

Modify the above program so that it can read the analog inputs A0, A1, A2 and display
the values as a table in HTTP body message.

Further Information about the Web Client and Server

https://os.mbed.com/cookbook/HTTP-Serverhttps://os.mbed.com/cookbook/
Networking

123

https://os.mbed.com/cookbook/HTTP-Serverhttps://os.mbed.com/cookbook/Networking
https://os.mbed.com/cookbook/HTTP-Serverhttps://os.mbed.com/cookbook/Networking

124

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

7.3 TCP Socket and UDP Socket

With Arm® Mbed™ you can also provide simple and consistent communications
using TCP (File Transfer Protocol) and UDP (User Datagram Protocol) sockets.
Communications using TCP sockets are connection oriented, more reliable, but more
complex and slower. Communications using UDP is connectionless, and therefore
much simpler, faster, but less reliable.

The following example is a simple TCP socket server. It receives data from a TCP
client and echoes it back. Again, you will need both “Ethernetinterface” library and
“rmbed-rtos” library.

Rk S S kR S

// Example 7.5

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 7

EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

int main (void) {
eth.init () ;
eth.connect () ;
printf ("\nServer IP Address is %s\n", eth.getIPAddress()) ;

server.bind (PORT) ;
server.listen() ;

while (true) {
server.accept (client) ;
client.set blocking(false, 1500); // Timeout after (1.5)s

printf ("Connection from: %$s\n", client.get address());
char buffer[256];
while (true) {
int n = client.receive (buffer, sizeof (buffer));
if (n <= 0) break;

// print received message to terminal
buffer[n] = "\0’;
printf ("Received message from Client :’%s’\n",buffer);

// Echo received message back to client
client.send all (buffer, n);
if (n <= 0) break;

Networking and Communications

client.close() ;

}

Rk bk b S Rk kS Rk R R I R A

Following is a corresponding TCP Echo Client program. In this code, you will need to
change the server IP address "x.x.x.x" to correct server address.

Rk bk b S Rk kS Rk R R I R A

// Example 7.6

#include "mbed.h"
#include "EthernetInterface.h"

const char* SERVER = "X.X.X.X";
const int PORT = 7;

EthernetInterface eth;
TCPSocketConnection socket;

int main()
eth.init () ;
eth.connect () ;
printf ("\nClient IP Address is %s\n", eth.getIPAddress()) ;

while (socket.connect (SERVER, PORT) < 0) {
wait (1) ;
}

printf ("Connected to Server at %$s\n", SERVER) ;

// Send message to server
char msg[] = "Hello World";
socket.send all (msg, sizeof (msg) - 1);

// Receive message from server

char buff [256];

int n = socket.receive (buf, 256);

buff[n] = "\0’;

printf ("Received message from server: ’%$s’\n", buff);

socket.close () ;
eth.disconnect () ;

while (true) {}

}

Rk bk b S Rk kS Rk I kR Ik R R I

125

126

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 7.2

Modify the above TCP client/server programs so that the server receives the message
from the client, changes it to uppercase, then echoes it back to the client.

The following example is a simple UDP Echo Server; again, it receives data from a
UDP client and echoes it back. It also will need both “Ethernetinterface” library and
“rmbed-rtos” library.

R R IR Ik i i ki ki Rk ki ki

// Example 7.7

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 7

EthernetInterface eth;
UDPSocket server;
Endpoint client;

int main (void) {
eth.init () ;
eth.connect () ;
printf ("\nServer IP Address is %s\n", eth.getIPAddress()) ;

server.bind (PORT) ;

char buffer([256];

while (true) {
printf ("\nWaiting for UDP packet..\n") ;
int n = server.receiveFrom(client, buffer, sizeof (buffer)) ;
buffer[n] = "\0’;

server.sendTo (client, buffer, n);

}

R R IR I Ik i ko ki ki R Rk kI kI

Following is the corresponding UDP Echo Client. Again, in this code, you will need to
change the server IP address "x.x.x.x" to the correct server address.

Networking and Communications | 127

R b S S S O R S S

// Example 7.8

#include "mbed.h"
#include "EthernetInterface.h"

const char* SERVER = "x.xX.X.X";
const int PORT = 7;

EthernetInterface eth;
UDPSocket sock;
Endpoint echo_ server;

int main() {
eth.init () ;
eth.connect () ;

sock.init () ;
echo_server.set_ address (SERVER, PORT) ;

char msg[] = "Hello World";
sock.sendTo (echo_server, msg, sizeof (msg)) ;

char buffer[256];
int n = sock.receiveFrom(echo server, buffer, sizeof (buffer));

buffer[n] = "\0’;
printf ("Received message from server: ’'%s’\n", buffer);

sock.close() ;
eth.disconnect () ;
while (1) {}

}

Rk b Sk S R S S

Exercise 7.3

Modify the above UDP client/server programs so that the server reads the digital pin
DO and sends the value to the client.

128

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed
Further Information about the Socket

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/communication/
network_sockets/

7.4 WebSocket

The WebSocket provides full-duplex, bidirectional communications between a Web
server and Web clients. Following is a WebSocket example code that simply sends
a “Hello World” message every 2 seconds to a WebSocket echo server (ws://echo.
websocket.org).

In this program, you will need to import three libraries:

1) “Ethernetinterface” library (https://os.mbed.com/users/mbed_official/code/
EthernetInterface/)

2) “mbed-rtos” library (https://os.mbed.com/users/mbed_official/code/mbed-rtos/)

3) “WebSocketClient” library (https://os.mbed.com/users/samux/code/WebSocketClient/).

Rk b kR kR R R R R Rk

// Example 7.9

#include "mbed.h"
#include "EthernetInterface.h"
#include "Websocket.h"

EthernetInterface eth;

int main() {
eth.init () ;
eth.connect () ;
printf ("IP Address is %s\n\r", eth.getIPAddress()) ;

Websocket ws ("ws://echo.websocket.org") ;
ws.connect () ;

while (1) {
ws.send ("Hello World") ;
wait (2.0) ;

}
}

Rk b kR kR R R R R Rk

Exercise 7.4

Modify the above program so that it can continuously read the temperature sensor
values and send it to the WebSocket server.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/network_sockets/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/network_sockets/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/
https://os.mbed.com/users/samux/code/WebSocketClient/

Networking and Communications

Following is a revised WebSocket example code that sends one “Hello World”
message to a WebSocket echo server (ws://echo.websocket.org) and gets the echoed
message back.

R R R i kR R ki kS

// Example 7.10

#include "mbed.h"
#include "EthernetInterface.h"
#include "Websocket.h"

EthernetInterface eth;

int main()

{

eth.init () ;
eth.connect () ;

printf ("IP Address: %s\n", eth.getIPAddress());

Websocket ws ("wss://echo.websocket.org") ;
ws.connect () ;

char str[100];
sprintf (str, "Hello World");
ws.send (str) ;

memset (str, 0, 100);
wait (1.0f) ;

if (ws.read(str)) {
printf ("rcv’d: %s\n", str);
}
ws.close () ;
eth.disconnect () ;
while (true) ;

}

ER R R R kR R ik ko

You can also build your own WebSocket server using Python or Java, as illustrated in
the following Arm® Mbed" Cookbook site (Figures 7.8 to 7.10).

https://os.mbed.com/cookbook/Websockets-Server

129

https://os.mbed.com/cookbook/Websockets-Server

130

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

B - o x
W veetuoches Server - oo W
& & C @ hitpsy/fos.mbedcom/cockbook/Websockets-Serve an m =
Qrm meeo Mbed O MbedCioud Partrer Portal a

- Recent changes
Websockets Server

Loka
LT

Websocket Tutorial 9 Tt T ol

1 Websocket T
2.1~ Hallo Werld

A exgilsined in this webpage, the abiters Rll-duphes. bi-Seeetional Pthord TMP102 Temperature Sensor
communications between a server and clients. 2.2 -Streaming Davil) bl

E S —— aserver. Tornads

Wbsocket sarves for our laternet of Things project, bn th tutorial,wi wall prasant ar SRFO8 Utirasonic Ranger

topet the ing uting websockets.

5 W dctance . range . RangeFiodes .
This tusorial is dvised into twe parts:

SRFDS . ubrscanic
* AHsllo World which uses Tormado
. t i 2

ADNLIAS Accolerometer

1 - Hello World (Python) e g,

AT

1.1- Server side: Tornado Documenting a Uibrary
W decumentation , donggen .

i, wal

HT"L Ethernet RJ45

deadmbed
W btk | e

&/ Tornado ——

Figure 7.8 The WebSocket Server page on mbed Cookbook website.
ﬂ o o x
| veetuochess - Coskbosk | %
& = € B hitps:/fes.mbed.com/cockbook/Websockets = @ =

Websocket Client on Mbed

There is 8 websockets library for mbed that i sy gi ibde i wif,
celiular..etc). Please see below for the websocket library and an examp these
anampies together with the py code i and teet yous

L [
Simpile welisocket client

Last commit 16 Mar 2017 by, mbed_example

(= chet_E Import program

g via Ethernet
Last commit 23 Jum 2017 by, mbed_example
WAl wikipages

Mbed | bicg | we're hiring! | support | service status | privacy policy | terms and conditions

Figure 7.9 The WebSocket Client section on mbed Cookbook website.

Networking and Communications

o

L o g (o8 mbed.com, ms=

Figure 7.10 The WebSocket Echo Server -Python section on mbed Cookbook website.

Further Information about the WebSocket

https://os.mbed.com/cookbook/Websockets
https://os.mbed.com/components/HTML5-Websockets/
https://os.mbed.com/cookbook/Websockets-Server

7.5 WiFi

WiFi is another way to get the FRDM-K64F board connected to the Internet. In
this example, we will use the ESP8266 WiFi module. Figure 7.11 shows the pin
connections.

Here is a simple WiFi program, which connects to an access point and displays the IP
address received. In this program, you will need to replace the ("xxx", "ppp") with your
own access point username and password. The code should work for both FRDM-K64F
and LPC 1768 boards. You will also need to import the “ESP8266” library:

https://os.mbed.com/users/quevedo/code/ESP8266/

131

https://os.mbed.com/cookbook/Websockets
https://os.mbed.com/components/HTML5-Websockets/
https://os.mbed.com/cookbook/Websockets-Server
https://os.mbed.com/users/quevedo/code/ESP8266/

132 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

ESPB266 mbed
vcc GND
vcc -> 33

GND -> GND

CHPD -> 3v3

TXD -> Rx =D0O
RXD > Tx =D1
RST -> Not used
GPIOO -> Not used
GPIO2 -> Not used

Tx

Figure 7.11 The schematic circuit diagram of the FRDM-K64F board and WiFi module (ESP8266).

ER R R R R R R R R R R R R R

// Example 7.11

#include "mbed.h"
#include "ESP8266.h"

Serial pc (USBTX,USBRX) ;
#if defined (TARGET_K64F)

ESP8266 wifi (PTC17, PTClé6, 115200); // baud rate for wifi
#elif defined (TARGET_LPC1768)

ESP8266 wifi (P9, P10, 115200); // baud rate for wifi
#endif

char snd[255],rcv[1000];
int main () {

pc.baud(115200) ;
pc.printf ("SET mode to AP\r\n");

wifi.SetMode (1) ; // set ESP mode to 1
wifi.RcvReply (rcv, 1000); //receive a response from ESP
pc.printf ("%$s",rcv) ; //Print the response onscreen

pc.printf ("Connecting to AP\r\n") ;

Networking and Communications

wifi.Join("xxx", "ppp"); // Your wifi username & Password
wifi.RcvReply (rcv, 1000); //receive a response from ESP
pc.printf ("%s", rcv); //Print the response onscreen

wait (8) ; //wait for response from ESP

pc.printf ("Getting IP\r\n"); //get IP address from the connected AP
wifi.GetIP (rcv); //receive an IP address from the AP

pc.printf ("%s", rcv);
while (1) {

}//wWhile

} //main
R I I I S I I I I I P P I P S R I I I P S P S P SR S b S I b P b S S S

Following is an improved version of the program, which brings up the ESP8266 WiFi
network interface, and connects to a website:

dkhkkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhdrhdrhdhhdhhdhddhdrhrddhrdrhrdrhrdrhrdrhkdx*x

// Example 7.12

#include "mbed.h"

#include "ESP8266.h"

#include "EthernetInterface.h"
#include "HTTPClient.h"

Serial pc (USBTX,USBRX) ;
#if defined (TARGET_K64F)

ESP8266 wifi (PTC17, PTCl6, 115200); // baud rate for wifi
#elif defined (TARGET_LPC1768)

ESP8266 wifi (P9, P10, 115200); // baud rate for wifi
#endif

char snd[255],rcv[1000];

void getpage (void) ;
HTTPClient http;

int main () {

pc.baud(115200) ;
pc.printf ("SET mode to AP\r\n");

wifi.SetMode (1) ; // set ESP mode to 1
wifi.RcvReply (rcv, 1000); //receive a response from ESP
pc.printf ("%s",rcv) ; //Print the response onscreen

pc.printf ("Connecting to AP\r\n") ;
wifi.Join ("xxx", "ppp"); // Your wifi username & Password

133

134 | Designing Embedded Systems and the Internet of Things (1oT) with the ARM® Mbed"™

wifi.RevReply (rcv, 1000); //receive a response from ESP
pc.printf ("%s", rcv); //Print the response onscreen

wait (8) ; //wait for response from ESP

pc.printf ("Getting IP\r\n"); //get IP address from the connected AP
wifi.GetIP (rcv); //receive an IP address from the AP
pc.printf ("%s", rcv);

getpage () ;

while (1) {

}//while
} //main

void getpage ()

{
TCPSocketConnection sock;
sock.connect ("www.google.co.uk", 80);

char request[] = "GET / HTTP/1.0\n\n";
sock.send all (request, sizeof (request)-1);

char buffer([1024];
int ret;
while (true)
ret = gsock.receive (buffer, sizeof (buffer)-1);
if (ret <= 0)
break;
buffer([ret] = *\0’;
printf ("Received %d chars from server:\n%s\n", ret, buffer);

sock.close() ;

}

R R Rk kS Rk ki

Exercise 7.5

Modify the above program so that it can send “Hello World” to a WebSocket server.

Further Information about WiFi

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/communication/wifi/

https://os.mbed.com/users/4180_1/notebook/using-the-esp8266-with-the-mbed-
Ipc1768/

https://os.mbed.com/teams/ESP8266/code/mbed-os-example-esp8266/

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/wifi/
https://os.mbed.com/users/4180_1/notebook/using-the-esp8266-with-the-mbed-lpc1768/
https://os.mbed.com/users/4180_1/notebook/using-the-esp8266-with-the-mbed-lpc1768/
https://os.mbed.com/teams/ESP8266/code/mbed-os-example-esp8266/

Networking and Communications | 135
https://github.com/armmbed/esp8266-driver/
https://os.mbed.com/teams/ESP8266/code/ESP8266_MQTT_HelloWorld/

7.6 Summary

This chapter introduces the networking and communication facilities including the
Ethernet, web client, web server, TCP and UDP socket, WebSockets, and WiFi.

https://github.com/armmbed/esp8266-driver/
https://os.mbed.com/teams/ESP8266/code/ESP8266_MQTT_HelloWorld/

8

Digital Signal Processing and Control

I have not failed. I've just found 10,000 ways that won’t work.
- Thomas A. Edison

Signal processing is important for many applications. With the power of modern com-
puters, many signal processing functions can now be done digitally. In this chapter we
will illustrate how to use the Arm® Mbed"-DSP library (https://developer.mbed.org/
users/mbed_official/code/mbed-dsp/) for digital signal processing and control.

8.1 Low-Pass Filter

On the Arm® Mbed" website, there is an excellent tutorial on how to design and imple-

ment a low-pass FIR (finite impulse response) filter. We will basically follow the exam-

ple and extend it to high-pass filter and band-pass/stop filter.
https://os.mbed.com/handbook/Matlab-FIR-Filter

First, we need to use MATLAB software (www.mathworks.com) to create a digital
filter. Digital filter design is a complex topic as it involves complicated math. MATLAB
has a Signal Processing Toolbox that can make digital filter design much simpler. FIR
(finite impulse response) filters and IIR (infinite impulse response) filters are the com-
monly used digital filters. The FIR filter is used here as it requires no feedback loop and
is more stable.

Following is the MATLAB code (modified from https://os.mbed.com/handbook/
Matlab-FIR-Filter) that creates a low-pass filter using “fir1” function. The sampling
rate is 48,000 Hz, Nyquist frequency is half of the sampling frequency, 24,000 Hz, and
cutoff frequency is 6000 Hz. The “fir1” function creates a 28th order digital filter in a
normalized frequency range (0 to 1), with 1 representing the Nyquist frequency, i.e.,
24,000 Hz. The normalized cutoff frequency will therefore be 6000 / 24,000 = —%,
or 0.25.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

137

https://developer.mbed.org/users/mbed_official/code/mbed-dsp/
https://developer.mbed.org/users/mbed_official/code/mbed-dsp/
https://os.mbed.com/handbook/Matlab-FIR-Filter
http://www.mathworks.com
https://os.mbed.com/handbook/Matlab-FIR-Filter
https://os.mbed.com/handbook/Matlab-FIR-Filter

138

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

%$Example 8.1
$Modified from https://os.mbed.com/handbook/Matlab-FIR-Filter

sample rate = 48000;

% Choose filter cutoff frequency (6 kHz)

cutoff hz = 6000;

% Normalize cutoff frequency (wrt Nyquist frequency)
nyq freq = sample rate / 2;

cutoff norm = cutoff hz / nyq freq;

% FIR filter order (i.e., number of coefficients - 1)
order = 28;

% Create lowpass FIR filter
fir coeff = firl(order, cutoff norm) ;
% Analyze the filter using the Filter Visualization Tool

fvtool (fir coeff, 'Fs', sample rate)
PR R R R R E R EREREEEEEEEEEEREEEEEEEE R LR E RS RS EEEEEEE RS RS RS EEEE R R

Figure 8.1 shows the FIR low-pass filter and its 29 (order +1) coefficients. We can
now use these coefficients in mbed program to implement a low-pass digital filter.

fir coeff =

-0.0018 -0.0016 0.0000 0.0037 0.0081 0.0085 -0.0000 -0.0174

-0.0341 -0.0334 0.0000 0.0676 0.1522 0.2229 0.2505 0.2229
0.1522 0.0676 0.0000 -0.0334 -0.0341 -0.0174 -0.0000 0.0085
0.0081 0.0037 0.0000 -0.0016 -0.0018

Magnitude Response (dB)

/

\

8720 \
o

o —30

©

: \
g -40 \
©

= 50

. VAVAVAVaVaVaVavay:
VoV Y

if Il 1
0 5 10 15 20

Frequency (kHz)

Figure 8.1 The FIR low-pass filter’s coefficients (top) and the plot (bottom). Cutoff frequency is 6000
Hz, and Nyquest frequency is 24,000 Hz.

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control | 139

& coms - m] X

JVAVAVAVAVAVAVAVAVAVAY

5600 baud |

Figure 8.2 The output of the program using Arduino Serial Plotter, with the original mixed signal at
the bottom and filtered signal at the top.

Following is the mbed example that uses above FIR low-pass filter coefficients. It first
generates a mixed signal (32 x 20 points) using 1000 Hz sinusoid and 15,000 Hz sinu-
soid, then uses a FIR low-pass filter to filter out the 15,000 Hz. Finally, it prints both
the original signal and filtered signal to a computer through a virtual COM port. In
Figure 8.2, the filtered signal was shifted 3 V upward so that we can view the two signals
separately.

In this program, you will need the mbed-DSP library:

https://os.mbed.com/users/mbed_official/code/mbed-dsp/

khkkkhkkhkkhkkhkhkhkkhkhkhhhkdhhkdrhdrhddhdhhdhhdhddhrddhdrhrdrhrdrddrhrdrddxik

//Example 8.2
//Modified from https://os.mbed.com/handbook/Matlab-FIR-Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK SIZE (32)
#define NUM_BLOCKS (20)
#define TEST LENGTH SAMPLES (BLOCK_SIZE * NUM BLOCKS)

https://os.mbed.com/users/mbed_official/code/mbed-dsp/
https://os.mbed.com/handbook/Matlab-FIR-Filter

140

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

#define SAMPLE_ RATE (48000)

float32 t expected output [TEST_ LENGTH_SAMPLES] ;
float32 t output [TEST LENGTH SAMPLES] ;

#define NUM TAPS 29

int main() {
Sine f32 sine 1KHz(1000, SAMPLE RATE, 1.0);
Sine f32 sine 15KHz (15000, SAMPLE RATE, 0.5);
FIR_f32<NUM TAPS> fir (firCoeffs32);

float32_t buffer a[BLOCK SIZE];

float32_t buffer b[BLOCK SIZE];

for (float32_t *sgn=output; sgn< (output+TEST LENGTH SAMPLES) ;
sgn += BLOCK SIZE) ({

sine 1KHz.generate (buffer a); // Generate a 1KHz sine wave
sine 15KHz.process (buffer a, buffer b); // Add a 15KHz sine wave
fir.process (buffer b, sgn); // FIR low-pass filter: 6KHz cutoff
for (int i=0;i<BLOCK _SIZE;i++)
{
printf ("$0.3£\t%0.3£\t%0.3f\n\r",buffer alil, (buffer b[i]l+3), (sgnl[i]+6));
}

}

R R Rk kS Rk ki

Figure 8.2 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and the filtered signal at the top. As we can see, after
filtering, only the 1000 Hz signal remains.

Digital Signal Processing and Control

8.2 High-Pass Filter

Similarly, we can also implement the high-pass filter. All you need to do is to modify
Example 8.1 MATLAB code, and change “fir1” function line from:

fir coeff = firl(order, cutoff norm);
to

fir coeff

firl (order, cutoff norm, ‘high’);

Figure 8.3 shows the corresponding FIR high-pass filter and its 29 (order +1) coeffi-
cients. We can now use these coefficients in mbed program to implement a low-pass
digital filter.

fir coeff =

0.0018 0.0016 -0.0000 -0.0037 -0.0080 -0.0085 -0.0000 0.0173
0.0340 0.0332 -0.0000 -0.0674 -0.1516 -0.2221 0.7487 -0.2221
-0.1516 -0.0674 -0.0000 0.0332 0.0340 0.0173 -0.0000 -0.0085
-0.0080 -0.0037 -0.0000 0.0016 0.0018

Modify the Example 8.2, and change the FIR coefficients using the new values, as
shown below.

Magnitude Response (dB)

/

Magnitude (dB)
Lo
o o
'\

N/
ol

0 5 10 15 20
Frequency (kHz)

Figure 8.3 The FIR high-pass filter’s coefficients (top) and the plot (bottom). Cutoff frequency is
6000 Hz, and Nyquest frequency is 24,000 Hz.

141

142

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

R S S S R

//Example 8.3
//Modified from https://os.mbed.com/handbook/Matlab-FIR-Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK SIZE (32)

#define NUM BLOCKS (20)

#define TEST LENGTH SAMPLES (BLOCK_SIZE * NUM BLOCKS)
#define SAMPLE RATE (48000)

float32 t expected output [TEST LENGTH SAMPLES] ;
float32 t output [TEST LENGTH SAMPLES] ;

#define NUM TAPS 29

int main() {
Sine f32 sine 1KHz(1000, SAMPLE RATE, 1.0);
Sine f32 sine 15KHz (15000, SAMPLE RATE, 0.5);
FIR f32<NUM TAPS> fir(firCoeffs32);

float32 t buffer a[BLOCK SIZE];
float32 t buffer b[BLOCK SIZE];
for(float32 t *sgn=output; sgn< (output+TEST LENGTH SAMPLES); sgn +=
BLOCK SIZE)
{
sine 1KHz.generate (buffer a); // Generate a 1KHz sine wave
sine 15KHz.process (buffer a, buffer b); // Add a 15KHz sine wave
fir.process (buffer b, sgn); // FIR low-pass filter: 6KHz cutoff
for (int i=0;i<BLOCK SIZE;i++)
{
printf ("$0.3£\t%0.3£\t%0.3f\n\r",buffer alil, (buffer b[i]+3),
(sgnlil+6)) ;

}

}

Rk R Rk S kR R Rk kS ki

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control | 143

& coms - O X

t + + 1
140 ZES 390 515 &40

Figure 8.4 The output of the program using Arduino Serial Plotter, with original mixed signal at the
bottom and filtered signal at the top.

Figure 8.4 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and filtered signal at the top. As we can see this
time, after filtering, only 15,000 Hz signal remained.

8.3 Band-Pass Filter

For the band-pass filter, modify Example 8.1 MATLAB code and change “fir1” function
line from:

fir coeff = firl(order, cutoff norm);
to
fir coeff = firl(order, [0.5 0.7]);

In this case, only the frequencies between 0.5 x 24,000 (12,000 Hz) to 0.7 x 24,000
(16,800 Hz) are allowed to pass; other frequencies are blocked. Figure 8.5 shows the

144

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Magnitude Response (dB)

/ N\
/ \

Magnitude (dB)

o\ ’/A\ AN ,

[1 \,

8|
0 5 10 15 2
Frequency (kHz)

N/
[

Figure 8.5 The FIR band (12000 Hz to 16800 Hz) pass filter's coefficients (top) and the plot (bottom).

corresponding FIR band-pass filter and its 29 (order +1) coefficients. We can now use
these coefficients in mbed program to implement a band-pass digital filter.

fir_coeff =

-0.0011 -0.0030 0.0033 0.0010 0.0000 -0.0024 -0.0171 0.0332
0.0207 -0.0974 0.0400 0.1292 -0.1494 -0.0622 0.2069 -0.0622
-0.1494 0.1292 0.0400 -0.0974 0.0207 0.0332 -0.0171 -0.0024
0.0000 0.0010 0.0033 -0.0030 -0.0011

Modify Example 8.2 and change the FIR coefficients using the new values, as
shown below.

R R Rk I ki kS Rk ko

//Example 8.4
//Modified from https://os.mbed.com/handbook/Matlab-FIR-Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK SIZE (32)
#define NUM_BLOCKS (20)
#define TEST LENGTH_SAMPLES (BLOCK_SIZE * NUM_BLOCKS)

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control

#define SAMPLE RATE (48000)

float32 t expected output [TEST LENGTH_ SAMPLES] ;
float32 t output [TEST LENGTH SAMPLES] ;

#define NUM TAPS 29

int main() {
Sine f32 sine 1KHz(1000, SAMPLE RATE, 1.0);
Sine f32 sine 15KHz (15000, SAMPLE RATE, 0.5);
FIR_f32<NUM TAPS> fir (firCoeffs32);

float32_t buffer a[BLOCK SIZE];
float32_t buffer b[BLOCK SIZE];
for(float32_ t *sgn=output; sgn< (output+TEST LENGTH_ SAMPLES); sgn
+= BLOCK_SIZE)
{
sine 1KHz.generate (buffer a); // Generate a 1KHz sine wave
sine 15KHz.process (buffer a, buffer b); // Add a 15KHz sine wave
fir.process (buffer b, sgn); // FIR low-pass filter: 6KHz cutoff
for (int i=0;i<BLOCK_SIZE;i++)
{
printf ("$0.3£\t%0.3£\t%0.3f\n\r",buffer al[il, (buffer b[i]l+3),
(sgn[il+6)) ;

}

}

R R S S

Figure 8.6 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and filtered signal at the top. As we can see this
time, after the band-pass filtering, only 15,000 Hz signal remained.

145

146

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

© com - 0D x
[1]
004
4.0
0.0
% 268 o [w0

Figure 8.6 The output of the program using Arduino Serial Plotter, with the original mixed signal at
the bottom and filtered signal at the top.

8.4 Band-Stop Filter and Notch Filter

For the band-stop filter, modify the Example 8.1 MATLAB code, and change “firl”
function line from:

fir coeff = firl (order, cutoff norm) ;
to
fir coeff = firl(order, [0.5 0.7],’stop’);
In this case, the frequencies between 0.5 x 24,000 (12,000 Hz) to 0.7 x 24000

(16,800 Hz) will be blocked and other frequencies are allowed. When the band
becomes narrow enough, band-stop filter will become notch filter. Figure 8.7 shows

Digital Signal Processing and Control

Magnitude Response (dB)

. \ -
N/

\ /
\
V

0 5 10 15 20
Frequency (kHz)

Magnitude (dB)

Figure 8.7 The FIR band (12,000 Hz to 16,800 Hz) stop filter’s coefficients (top) and the plot (bottom).

the corresponding FIR band-stop filter and its 29 coefficients, which can be used in
mbed program to implement a band-stop digital filter.

fir coeff =

0.0011 0.0029 -0.0032 -0.0010 -0.0000 0.0023 0.0165 -0.0320
-0.0200 0.0939 -0.0385 -0.1245 0.1440 0.0599 0.7974 0.0599
0.1440 -0.1245 -0.0385 0.0939 -0.0200 -0.0320 0.0165 0.0023
-0.0000 -0.0010 -0.0032 0.0029 ©0.0011

Modify the Example 8.2, and change the FIR coefficients using the new values, as
shown below.

R R R S S Rk kS

//Example 8.5

//Modified from https://os.mbed.com/handbook/Matlab-FIR-Filter
#include "mbed.h"

#include "dsp.h"

#define BLOCK SIZE (32)
#define NUM_BLOCKS (20)
#define TEST LENGTH SAMPLES (BLOCK_SIZE * NUM BLOCKS)

#define SAMPLE RATE (48000)

147

https://os.mbed.com/handbook/Matlab-FIR-Filter

148

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

float32 t expected output [TEST_ LENGTH_ SAMPLES] ;
float32 t output [TEST LENGTH SAMPLES] ;

#define NUM_TAPS 29

/* FIR Coefficients buffer generated using firl() MATLAB function:
firl (28, [0.5 0.7],'stop'); */

//band-stop filter coefficients

const float32 t firCoeffs32[NUM TAPS] = {

0.0011f, 0.0029f, -0.0032f, -0.0010f, -0.0000f, 0.0023f, 0.0165f, -0.0320f,
-0.0200f, 0.0939f, -0.0385f, -0.1245f, 0.1440f, 0.0599f, 0.7974f, 0.0599f,
0.1440f, -0.1245f, -0.0385f, 0.0939f, -0.0200f, -0.0320f, 0.0165f, 0.0023f,
-0.0000f, -0.0010f, -0.0032f, 0.0029f, 0.0011f,

b
int main()
Sine f32 sine 1KHz(1000, SAMPLE RATE, 1.0);
Sine f32 sine 15KHz (15000, SAMPLE RATE, 0.5);
FIR f32<NUM TAPS> fir(firCoeffs32);
float32 t buffer a[BLOCK SIZE];
float32 t buffer b[BLOCK SIZE];
for (float32 t *sgn=output; sgn< (output+TEST LENGTH SAMPLES); sgn
+= BLOCK SIZE)
{
sine 1KHz.generate (buffer a); // Generate a 1KHz sine wave
sine 15KHz.process (buffer a, buffer b); // Add a 15KHz sine wave
fir.process (buffer b, sgn); // FIR low-pass filter: 6KHz cutoff
for (int 1i=0;i<BLOCK SIZE;i++)
{

printf ("$0.3£\t%0.3£\t%0.3f\n\r",buffer ali], (buffer b[i]+3),
(sgn[il+6));

}

}

khkkhkkhkkhhkhkkhhkhkhhkdhhkdhhkdhhkdhhdhhdhddhddhddhdrhrdrhrdrhrdrhrdrhrdrddx*x

Figure 8.8 shows the output of the program using Arduino Serial Plotter, with original
mixed signal at the bottom and filtered signal at the top. As we can see, after filtering,
15,000 Hz signal was stopped, and only 1000 Hz signal remained.

Further Information about the Digital Filter:

http://uk.mathworks.com/help/signal/ref/fir1.html
https://en.wikipedia.org/wiki/Digital_filter

http://uk.mathworks.com/help/signal/ref/fir1.html
https://en.wikipedia.org/wiki/Digital_filter

Digital Signal Processing and Control
& coms - u] X
[] |

JVAVAVAVAVAVAVAVAVAVAY

Figure 8.8 The output of the program using Arduino Serial Plotter, with original mixed signal at the
bottom and filtered signal at the top.

8.5 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) and inverse FFT have many important applications. In
this section, we will show how to perform an FFT and inverse FFT using the mbed-DSP
library:

https://os.mbed.com/users/mbed_official/code/mbed-dsp/

The following example illustrates how to use “arm_cfft f32()” to perform complex
FFT. The “arm_cfft_f32()” function can only be used for data lengths of [16, 32, 64, ...,
4096], but can be use both for FFT and inverse FFT. Check the above mbed-DSP library
for the details of the function.

arm cfft £32(S, samples, 0, 1); //FEFT
arm cfft £32(S, samples, 1, 1); //Inverse FFT

149

https://os.mbed.com/users/mbed_official/code/mbed-dsp/

150

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

The program first creates and initializes the complex FFT instance S, according to
the FFT length (FFT_LEN), in this case, is 512 points. Then it generates a mixed frequen-
cies signal using “sin()” function (30 Hz and 100 Hz), the sampling time d¢=0.001 second;
therefore, the sampling frequency is Fmax=1/dt=1000Hz, and the Nyquest frequency is
Fmax/2=500Hz. As we want to use real signal, we set the imaginary components equal
to zero. It also prints the original mixed signal to computer through virtual COM at the
same time. It then pause the program for 5 seconds. Finally, it calls “arm_cfft_f32()” to
perform the complex FFT and “arm_cmplx_mag f32()” to calculate the magnitude of the
transformed signal, and prints the magnitude of the FFT transform signal to computer
through virtual COM.

R S S I R S

//Example 8.6

#include "mbed.h"
#include "arm const structs.h"

const int FFT LEN = 512;
const static arm cfft instance f32 *S;

float samples[FFT LEN*2];
float magnitudes [FFT LEN] ;

int main()

{

int32 t i = 0;

// Init arm ccft 32

switch (FFT_LEN)

{

case 16:
S = & arm cfft sR £32 lenlé6;
break;

case 32:
S = & arm _cfft sR £32 len32;
break;

case 64:
S = & arm _cfft sR £32 lené64;
break;

case 128:
S = & arm _cfft sR £32 lenl2s8;
break;

case 256:
S = & arm _cfft sR £32 len256;
break;

Digital Signal Processing and Control

case 512:
S = & arm_cfft_sR_f32 len512;
break;
case 1024:
S = & arm_cfft_sR_f32 lenl024;
break;
case 2048:
S = & arm_cfft_sR_f32 1en2048;
break;
case 4096:
S = & arm_cfft_sR_f32 1en4096;
break;
}
double dt=0.001; //time interval
double £1=30; //frequency 1
double £2=100; //frequency 2

for(i = 0; i< FFT_LEN*2; i+=2)

{
samples [i] = sin(2*3.1415926*f1*dt*i) + 0.5*sin(2*3.1415926*f2*dt*i) ;
samples[i+1l] = 0;
printf ("$f\r\n", samples[i]) ;

}

wait (5) ;

while (1)

{

}
}

R R S S

Again, we can use Arduino Serial Plotter to view the results. As shown in Figure 8.9,
the mixed original signal is at the top, and magnitude of the correspond FFT trans-
formed signal at the bottom. As the FFT transformed signal always contains duplicated
peaks mirrored in the middle, we only need to look at the first half of the plot, when we
can clearly see two frequency peaks (30 Hz and 100 Hz). The peaks values are also
proportional to the original signal amplitude (1.0 and 0.5).

151

152 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

S cons - o x

6.0

D cone - o x
0.0
100.0
izo.@
&0.0
o.a
e o e) e T

Figure 8.9 The output of the program using Arduino Serial Plotter, with original mixed signal (top)
and the corresponding magnitude of the complex FFT transformed signal (bottom).

A very interesting application with FFT is that we can modify the FFT transformed
signal, such as applying a low-pass filter or a high-pass filter, then perform the
inverse FFT. In the following example, after FFT, the low-frequency components
(<50 Hz) was removed by setting them to zero, this is equivalent to applying a high-
pass filter. The inverse FFT is then performed, by using “arm_cfft_f32(S, samples,
1, 1)” function.

Digital Signal Processing and Control | 153

R b S S S O R S S

//Example 8.7

#include "mbed.h"
#include "arm const structs.h"

const int FFT LEN = 512;
const static arm cfft instance f32 *S;

float samples[FFT LEN*2];
float magnitudes [FFT LEN] ;

int main()

{

int32 t i = 0;

// Init arm ccft 32

switch (FFT_LEN)

{

case 16:
S = & arm _cfft sR £32 lenlé6;
break;

case 32:
S = & arm cfft sR £32 len32;
break;

case 64:
S = & arm cfft sR £32 lené4;
break;

case 128:
S = & arm cfft sR £32 lenl2s;
break;

case 256:
S = & arm cfft sR £32 len256;
break;

case 512:
S = & arm cfft sR £32 len512;
break;

case 1024:
S = & arm _cfft sR £32 lenl024;
break;

case 2048:
S = & arm _cfft sR £32 len2048;
break;

case 4096:
S = & arm _cfft sR £32 len4096;
break;

154

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

wait (5) ;

wait (5) ;

double Fmax=1/dt; //maximum frequency

double df=Fmax/ (FFT LEN*2); //delta frequency

double Fcut=50/df; //set cutoff frequency as 50 Hz

wait (5) ;

Digital Signal Processing and Control

while (1)

{

}
}

khkkhkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhdrhddhdhhdhhdhdrhdrhrdrhrdrhrdrdrdrhrdrhrdx*x

Figures 8.10 and 8.11 show the corresponding four consequent outputs of the pro-
gram. There was a 5-second delay between each output. Figure 8.10 (top) shows the
original mixed frequency signal, and Figure 8.10 (bottom) shows its corresponding FFT
frequency domain signal. Figure 8.11 (top) shows the FFT frequency domain signal with
lower frequency components (<50 Hz) removed, and Figure 8.11 (bottom) shows the

|

| L\fﬂlflmﬁ\ﬂﬂl’uﬂu} \ﬂ{'*ﬂu’hﬂﬂﬁf L&} H\J\#wapvjn#lnﬂ\Mer h\ﬂm”ur%“’\\ﬂm%ﬂhm

S com - o x

._.;’}\a 2 L J L J Ik\“‘:.

[v

Figure 8.10 The output of the program using Arduino Serial Plotter, with original mixed signal (top)
and the corresponding magnitude of the complex FFT transformed signal (bottom).

155

156 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

- o x
100.0
.
0.0
{ A
i —— p J
103 1136 1236 11 it 1836
D come - o x

Lsan T 148 1) T

Figure 8.11 The output of the program using Arduino Serial Plotter, with high-pass filtered FFT
transformed signal (top) and the corresponding inverse FFT transformed signal (bottom).

corresponding inverse FFT signal. As we can see, only the high-frequency component
remains in the reconstructed signal.

Similarly, we can also implement a low-pass filter using FFT. In the following exam-
ple, after FFT, the higher frequency components (>50 Hz) were removed by setting
them to zero. This is equivalent to applying a low-pass filter. The inverse FFT is then
performed, by using “arm_cfft_f32(S, samples, 1, 1)” function.

Digital Signal Processing and Control | 157

R b S S S O R S S

//Example 8.8

#include "mbed.h"
#include "arm const structs.h"

const int FFT LEN = 512;
const static arm cfft instance f32 *S;

float samples[FFT LEN*2];
float magnitudes [FFT LEN] ;

int main()

{

int32 t i = 0;

// Init arm ccft 32

switch (FFT_LEN)

{

case 16:
S = & arm _cfft sR £32 lenlé6;
break;

case 32:
S = & arm cfft sR £32 len32;
break;

case 64:
S = & arm cfft sR £32 lené4;
break;

case 128:
S = & arm cfft sR £32 lenl2s;
break;

case 256:
S = & arm cfft sR £32 len256;
break;

case 512:
S = & arm cfft sR £32 len512;
break;

case 1024:
S = & arm _cfft sR £32 lenl024;
break;

case 2048:
S = & arm _cfft sR £32 len2048;
break;

case 4096:
S = & arm _cfft sR £32 len4096;
break;

158

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

wait (5) ;

wait (5) ;

double Fmax=1/dt; //maximum frequency

double df=Fmax/ (FFT LEN*2) ; //delta frequency

double Fcut=50/df; //set cutoff frequency as 50 Hz

wait (5) ;

Digital Signal Processing and Control

while (1)

{

}
}

khkkhkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhdrhddhdhhdhhdhdrhdrhrdrhrdrhrdrdrdrhrdrhrdx*x

Figure 8.12 (top) show the FFT frequency domain signal with higher frequency com-
ponents (>50 Hz) removed, and Figure 8.12 (bottom) the corresponding inverse FFT
signal. As we can see, only the low-frequency component remains in the reconstructed
signal.

ﬂ;’\n f\pw\ MM f\/‘ \
MJ\;/\UM u/ uLJfUUM\\/

|_=n)

Figure 8.12 The output of the program using Arduino Serial Plotter, with low-pass filtered FFT
transformed signal (top) and the corresponding inverse FFT transformed signal (bottom).

159

160

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Further Information about FFT:

https://os.mbed.com/users/jcobb/code/audio_FFT/file/5b7b619f59cd/main.cpp/

https://os.mbed.com/users/tonyltf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/
main.cpp/

https://os.mbed.com/users/cpm219/code/fft_test k22f/

http://paulbourke.net/miscellaneous/dft/

https://rosettacode.org/wiki/Fast_Fourier_transform

8.6 PID Controller

The PID (proportional—integral-derivative) controller is one of the most commonly
used control mechanism. It is a closed loop controller that can be used in many control
systems, such as temperature control, cruise control etc. A PID controller continuously
calculates an error value e(%) as the difference between a desired set point and a meas-
ured process variable and applies a correction based on proportional, integral, and
derivative terms, as described in the following equations.

e(t) = Set point — Process variable

u(t) = K pe(t) + K, [e(r)dt + K, d;(tt) Eq (8.1)
0

where K, Kj, and K; are the coefficients for the proportional, integral, and derivative
terms, and u(%) is the correction that will be applied to the system.

There are many ways to implement a PID controller in the Arm® Mbed " device. The
simplest way is to use the mbed-DSP library:

https://os.mbed.com/users/mbed_official/code/mbed-dsp/

In this example, variable set_point is the desired value, and variable pv is the measured
process variable, and variable u is corresponding correction through a PWM output
pin. In this case, variable pv is connected to an analog input pin, and a potentiometer is
used to change the variable pv values. The pv values and u values are then printed to
virtual COM port. The (2 + u) shifts the u values up by 2 volts, this helps us to view pv
plots and u plots separately.

R S S S R S S S S R S S S

// Example 8.9

#include "mbed.h"
#include "dsp.h"

#if defined (TARGET K64F)
AnalogIn pv (AO0) ;
PwmOut u(D9) ;

#elif defined (TARGET LPC1768)

https://os.mbed.com/users/jcobb/code/audio_FFT/file/5b7b619f59cd/main.cpp/
https://os.mbed.com/users/tony1tf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/main.cpp/
https://os.mbed.com/users/tony1tf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/main.cpp/
https://os.mbed.com/users/cpm219/code/fft_test_k22f/
http://paulbourke.net/miscellaneous/dft/
https://rosettacode.org/wiki/Fast_Fourier_transform
https://os.mbed.com/users/mbed_official/code/mbed-dsp/

Ana

Digital Signal Processing and Control

logIn pv(pl9) ;

PwmOut u (p21) ;

#endif
Serial

pc (USBTX, USBRX) ;

arm _pid instance £32 pid;

float set point = 0.8;
int main()
{
//Set the initial duty cycle to 0%
u = 0.0;
//Initialize the PID instance structure
pid.Kp = 1.0;
pid.Ki = 0.002;
pid.Kd = 5.0;

arm pid init £32(&pid, 1);

while (1)

}

*kkkk*k

Figure

float out = arm pid f£32 (&pid, set point - pv.read()) ;
//Range limits the output
if (out < 0.0)

out = 0.0;
else if (out >= 1.0)
out = 1.0;

//Set the new output duty cycle

u = out;

pc.printf ("$0.3£\t%0.3f\n\r",pv.read (), (2+u));
walit (0.1) ;

Rk S S b S O O

8.13 shows the output of the program using Arduino Serial Plotter, with the

variable pv value at the bottom and the variable u value at the top. The results show that
as soon as the variable pv value changes, the variable u value changes accordingly. The
apparent oscillations of the u value as it changes can be reduced by adjusting the PID K,
K;, and K coefficients.

We can modify the above example to make it more flexible, as shown in the following
code. The K, K;, and K; coefficients can be taken from the virtual COM port from
computer, if available. The K}, K;, and K coefficients are sent as three numbers sepa-

rated by

|, as shown in Figure 8.14.

161

162 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

Figure 8.13 The output of the program using Arduino Serial Plotter, with the variable pv value at the
bottom and the variable u value at the top.

Rk bk kb I I R Ik kR R R R S R R

// Example 8.10

#include "mbed.h"
#include "dsp.h"

#if defined (TARGET_ K64F)
AnalogIn pv (A0) ;
PwmOut u(D9) ;

#elif defined (TARGET LPC1768)
AnalogIn pv(pl9) ;
PwmOut u(p21) ;

#endif

Serial pc (USBTX, USBRX) ;

arm pid instance f32 pid;
float set point = 0.8;

int main ()

{
//Set the initial duty cycle to 0%
u = 0.0;

Digital Signal Processing and Control

//Initialize the PID instance structure
pid.Kp = 1.0;

pid.Ki = 0.002;

pid.Kd = 5.0;

arm pid init £32(&pid, 1);

while (1)
if (pc.readable()) {
char buff [256]="";
pc.gets (buff, 256);
pc.printf ("$s\n\r", buff);
sscanf (buff,"$f|%f|%f",&pid.Kp, &pid.Ki, &pid.Kd) ;
arm pid init £32(&pid, 1) ;
}
float out = arm pid f32(&pid, set point - pv.read()) ;
//Range limit the output
if (out < 0.0)

out = 0.0;
else if (out >= 1.0)
out = 1.0;

//Set the new output duty cycle

u = out;
pc.printf ("$0.3£\t%0.3f\n\r",pv.read (), (2+u));
walit (0.1) ;

}

Rk b S S S O I O R S S

Further Information about the PID:

https://en.wikipedia.org/wiki/PID_controller
https://os.mbed.com/users/aberk/code/PID/
https://os.mbed.com/questions/1904/mbed-DSP-Library-PID-Controller/
https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/PID/

163

https://en.wikipedia.org/wiki/PID_controller
https://os.mbed.com/users/aberk/code/PID/
https://os.mbed.com/questions/1904/mbed-DSP-Library-PID-Controller/
https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/PID/

164

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

& come - o X
1lojo] Send
T.000 2.000 ~
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
v
& Autoscrol BothNL&CR - [9600baud
& come - o X
| Send
T.000 2.000 ~
1000 2.000
1000 2.000
1000 2.000
11010
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000
1000 2.000

[Autoscrol BONLECR | [s600baud

Figure 8.14 The output of the program using Arduino Serial Monitor, with the K, K, and Ky
coefficients (1]0]0) sent from computer to mbed device through virtual COM port (top) and the
corresponding responses of the virtual COM port (bottom).

8.7 Summary

This chapter illustrates how to use the Arm® Mbed "-DSP library to perform digital
signal processing, e.g., low-pass filter, high-pass filter, band-pass filter, band-stop filter
and notch filter. It also illustrates how to use the Arm® Mbed"-DSP library to perform
FFT (fast Fourier transform) and inverse FFT, as well as how to implement a PID
controller.

9

Debugging, Timer, Multithreading, and Real-Time
Programming

Never, never, never give up.
- Winston Churchill

9.1 Debugging

Debugging is an important process to get rid of the errors in the code. In programming
terms, "bugs" mean errors, and "debugging" means removing errors. The use of the
terms can be dated back to the 1940s, when Admiral Grace Hopper was working on a
Mark II Computer at Harvard University, her associates discovered a moth stuck in a
relay and thereby impeding operation, whereupon she remarked that they were "debug-
ging" the system.

Although the full debugging capabilities, which allows you to set break points, step
into the code etc., are not available for the online compiler, many techniques allow you
to get debugging information about your code.

There are generally two types of errors, compile-time errors and run-time errors. The
compile-time errors are normally due to incorrect syntax and misuse of variables and
functions. They can be relatively easily corrected, as otherwise your code would not be
able to be compiled. Run-time errors are more difficult to eliminate. However, the Arm®
Mbed"™ provides a mechanism called light of death, which will flash LEDs like the siren
lights, when a runtime error is encountered. Following is a typical example that will
result in light of death.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

165

166

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 9.1
#include "mbed.h"

PwmOut pout (D3) ;
intmain () {

while (1) {
for (floatp=0.0f;p<1.0f; p+=0.1f) {
pout=p;
wait (0.1) ;

}

R S I R S

The Arm® Mbed™ also contains some features for reporting runtime errors, for
example:

- printf()—Print a formatted message to the USB serial port (stdout default).

- error()—Print a formatted message to the USB serial port, then die with "Siren
Lights."

Following is an example on how to use the above methods to report errors.

ER R R R R R R R R R R R R R

// Example 9.2
#include "mbed.h"

DigitalInbutton (p21) ;
AnalogInpot (p20) ;

intmain () {
while (pot>0.0) {
printf ("Potvalue=%f", pot.read()) ;
wait (0.1) ;
}

error ("Loopunexpectedlyterminated") ;

}

ER R R R R R R R R R R R R R

Debugging, Timer, Multithreading, and Real-Time Programming

You can also use different LEDs to indicate the flow of your code, as shown in the
following example.

ER R R kR ki ko

// Example 9.3
#include "mbed.h"

AnalogInain (A0
DigitalOutledl
DigitalOutled2
DigitalOut led3

LED1) ; //use fordebug
LED2) ; //use fordebug
LED3) ; //use fordebug

—~ o~ —~ ~—

intmain () {

while (1) {

if (ain>2.0)) {
ledl=1;
led2=0;
led3=0;

Jelse if (ain>1.0)) {
ledl1=0;
led2=1;
led3=0;

}else{
ledl1=0;
led2=0;
led3=1;

}

ER R R R kR R ok ko ko

Further Information about Debugging:

https://os.mbed.com/handbook/Debugging

9.2 Timer, Timeout, Ticker, and Time

Timer is very useful for measuring small time changes, as illustrated in the following
example. It first starts the Timer, does some calculations, then stops the Timer and
reads the time elapsed in seconds. Any number of Timer objects can be created and can
be started and stopped independently.

167

https://os.mbed.com/handbook/Debugging

™

168 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed

R S S S R

// Example 9.4
#include "mbed.h"
Timer t;

intmain () {
t.start () ;
int x=10,y=20;
Y=X+Y;
t.stop() ;
printf ("Time=%f seconds\n", t.read()) ;

}

R S I R S

Figure 9.1 show the Arduino Serial Monitor output of the program. In this example,
the calculation only takes 3 microseconds.

Exercise 9.1

Modify the above program so that it can measure the time for running a “for” loop
10,000 times.

The Timeout interface is used to set up an interrupt to call a function after a specified
delay. In the following example, a function “fun()” has been assigned to a Timeout event,
which will interrupt the main loop after 2 seconds. A Timeout event will only occur once.

Any number of Timeout objects can be created, allowing multiple outstanding inter-
rupts at the same time.

O comrs ESEn
|

The time taken was 0.000003 seconds

m

-

Autoscroll jNo line ending vj jQSUU baud vj

Figure 9.1 The Arduino Serial Monitor output of Timer example.

Debugging, Timer, Multithreading, and Real-Time Programming | 169

Rk b S b S O I S S O R S S

// Example 9.5
#include "mbed.h"
Timeout tout;

void fun()
printf ("Timeout print...... \r\n") ;

int main()
tout.attach(&fun, 2.0); //set up Timeout to call fun() after 2 seconds
while (1) {
printf ("Main loop...... \r\n") ;
wait (0.2) ;

}

Rk b S S S O I S R S S

Figure 9.2 show the Arduino Serial Monitor output of the program. As we expected,
Timeout event only happened once, after 2 seconds of program running.

The Ticker interface is used to set up a recurring interrupt to repeatedly call a func-
tion at a specified rate. In the following example, a function “fun()” has been assigned to
a Ticker event, which will interrupt the main loop every 2 seconds. A Ticker event will
occur repeatedly.

Any number of Ticker objects can be created, allowing multiple outstanding inter-
rupts at the same time. The function can be a static function or a member function of a
particular object.

€2 com3 =1 ==X

Main loop......
Main loop......
Main lo0Dec.oass
Main loOD.c.os.
Main loOD.c.os.
Main loop......
Main loop......
Main loop......

m

Main

Main
Main
Main
Main

OA

-

jNoHneendhg vj jQSUUbaud vj

Figure 9.2 The Arduino Serial Monitor output of Timeout example.

170

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 9.6
#include "mbed.h"

Tickertk;

void fun()

printf ("Timeout print...... \r\n") ;
}
int main()
tk.attach(&fun, 2.0); //set up Ticker to call fun() every 2 seconds
while (1) {
printf ("Main loop...... \r\n") ;
wait (0.2) ;

}

R S S S R S S

Figure 9.3 show the Arduino Serial Monitor output of the program. In this case,
Ticker event happened every 2 seconds.

The Arm® Mbed ™ also has a Time function. Following is a simple program to set and
get date and time:

R S S S S R

// Example 9.7
#include "mbed.h"

int main() {
set_time(1256729737); // Set RTC time to Wed, 28 Oct 2009 11:35:37

while (true) {
time t seconds = time (NULL) ;

printf ("Time as seconds since January 1, 1970 = %d\n", seconds) ;
printf ("Time as a basic string = %s", ctime (&seconds)) ;

char buffer[32];

strftime (buffer, 32, "%$I:%M %p\n", localtime (&seconds)) ;
printf ("Time as a custom formatted string = %s", buffer);
wait (1) ;

}

R S S I R

Debugging, Timer, Multithreading, and Real-Time Programming

) COML2

[E=R(E=R (===

Main
Main
Main
Main
Main
Main
Main
Main

Main
Main
Main
Main
Main
Main
Main
Main
Main

Main
Main
Main
Main
Main
Main
Main
Main

Main

—
15
n
L
I
&}

o
H
H
o
ot
m

-~

-

:Nohneendng v: ﬁGODbaud v:

Figure 9.3

The Arduino Serial Monitor output of Ticker example.

Further Information about Time:

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/Timer/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/Timeout/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/Ticker/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Time/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/events/

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/wait/

9.3 Network Time Protocol (NTP)

Network Time Protocol (NTP) is a networking protocol for clock synchronization
between computer systems over packet-switched, variable-latency data networks.
Following is a simple example to show how to get time information from the Internet
using NTP. It uses the following libraries:

171

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Timer/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Timeout/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Ticker/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Time/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/events/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/wait/

172

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

“Ethernetinterface” library
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
“mbed-rtos” library
https://os.mbed.com/users/mbed_official/code/mbed-rtos/
“NTPClient” library

https://os.mbed.com/users/donatien/code/NTPClient/

R SR SRR S EE S SR SRS SRS SRR EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
// Example 9.8

// Modified from
// https://developer.mbed.org/users/donatien/code/NTPClient HelloWorld/

#include "mbed.h"
#include "EthernetInterface.h"
#include "NTPClient.h"

EthernetInterface eth;
NTPClient ntp;

int main()

{

}

eth.init () ;
eth.connect () ;

if (ntp.setTime ("0.pool.ntp.org")
{

time_t ctTime;

ctTime = time (NULL) ;

printf ("Time is set to (UTC): %s\r\n",

Il
1]
o

eth.disconnect () ;

while (1) { }

ctime (&ctTime)) ;

R IR Ik ki ki ki Rk ki ko

Figure 9.4 show the corresponding output of the program.

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/
https://os.mbed.com/users/donatien/code/NTPClient/
https://developer.mbed.org/users/donatien/code/NTPClient_HelloWorld/

Debugging, Timer, Multithreading, and Real-Time Programming

& com3 [E=5 E=N =<
| Send

s

Set time successfully
Time is set to (UIC): Fri Rpr 7 14:16:28 2017

m

=

| Autoscroll Moline ending ~ | 9600baud

Figure 9.4 The Arduino Serial Monitor output of the NTP example.

Further Information about NTP:

https://os.mbed.com/users/donatien/notebook/ntp-client/
https://os.mbed.com/cookbook/NTP-Client

9.4 Multithreading and Real-Time Programming

Multithreading is a powerful feature that comes along with the Arm® Mbed™ OS 5. It
allows you to run the tasks in parallel. For example, you can use one thread for com-
munication, and one thread for control. You will see more multithreading examples in
Chapter 12 with a multithreaded web server, and multi-thread smart lighting.

Multithreading is provided through Real-Time Operating System (RTOS), one of the
key features of the new mbed OS 5. This much-requested feature is now incorporated
in the core of the mbed operating system. RTOS provides native thread support to the
OS and applications, simplifying development and integration of complex and robust
application components like networking stacks. The RTOS requires very limited system
overhead.

To create a multithread program in the Arm® Mbed ™ is very simple. Just import the
“mbed-rtos” library, create a function that describes what you would like to do, and call
that function in a thread. The following program uses main loop to print out a message
and uses a separate thread to call the “fun_1()” function to print out another message.

173

https://os.mbed.com/users/donatien/notebook/ntp-client/
https://os.mbed.com/cookbook/NTP-Client

174

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

R S S S R

// Example 9.9

#include "mbed.h"
#include "rtos.h"

void fun 1(void const *args) {
while (true) {
printf ("Thread 1 \n\r");
Thread: :wait (200) ;

int main()
Thread thread(fun_ 1) ;

while (true) {
printf ("Main Loop Thread \n\zr");
Thread: :wait (100) ;

}

R S S I R S S

Figure 9.5 shows the Arduino Serial Monitor output of the example. As you can see,
the main loop thread executed every 100 ms, and the separate thread executed every
200 ms.

conn3 =
Main Loop Thread -
Main Loop Thread ...

Thread 1 ..

Main Loop Thread ...
Main Loop Thread ...
Thread 1
Main Loop Thread ...
Main Loop Thread ...
Thread 1
Main Loop Thread ...
Main Loop Thread ...
Thread 1
Main Loop Thread ...
Main Loop Thread ...
Thread 1
Main Loop Thread ...
Main Loop Thread ...
Thread 1
Main Loop Thread -

]

:No line ending v: :9600 baud v:

Figure 9.5 The Arduino Serial Monitor output of the multithread example.

Debugging, Timer, Multithreading, and Real-Time Programming

Following is an improved version of the above example, in which two functions were
created to print two messages and two threads were created in the “main()” function to
call these two functions.

R S S S S R S

// Example 9.10

#include "mbed.h"
#include "rtos.h"

void fun_ 1 (void const *args) {
while (true) {
printf ("Thread 1 \n\r") ;
Thread: :wait (200) ;

}

void fun 2 (void const *args) {
while (true) {
printf ("Thread 2 \n\r") ;
Thread: :wait (500) ;

int main() {
Thread threadl (fun 1) ;
Thread thread2 (fun 2);

while (true) {
}
}

R S S S S R S

Figure 9.6 shows the Arduino Serial Monitor output of the example. As you can see,
the two separate threads run simultaneously.

Following is another multithreaded example, in which two functions were created to
do some calculations and two threads were created in the “main()” function to call these
two functions. The two functions can both use global variable mode to share informa-
tion between them. As shown in Figure 9.7, function “fun_2()” modified the value of
mode and function “fun_1()” could pick up the corresponding changes.

175

176

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

com12 o= ==

[m]

:No line ending v: :9600 baud v:

Figure 9.6 The Arduino Serial Monitor output of the improved multithread example.

ER R R S R R S S R

// Example 9.11

#include "mbed.h"
#include "rtos.h"

int mode =0;

void fun 1 (void const *args) ({
while (true) {
printf ("mode: %d\n\r", mode) ;
Thread: :wait (200) ;

}

void fun 2 (void const *args)
while (true) {
mode++;
Thread: :wait (1000) ;

int main() {
Thread threadl (fun 1) ;
Thread thread2 (fun_ 2);

while (true) {

}
}

ER R R S R S R S S

Debugging, Timer, Multithreading, and Real-Time Programming | 177

& coms oo e

-

[]

R A N N N]

:No line ending v: :9600 baud v:

Figure 9.7 The Arduino Serial Monitor output of the above multithread example.

We can also combine the above multithreaded code with the web server code
(Example 8,8) to create a multithreaded web server.

ER L S R

// Example 9.12

#include "mbed.h"

#include "EthernetInterface.h"
#include <stdio.h>

#include <string.h>

#include "rtos.h"

#define PORT 80
EthernetInterface eth;

TCPSocketServer server;
bool serverIsListened = false;

TCPSocketConnection client;
bool clientIsConnected = false;

void web thread(void const *args)

{

//set up tcp socket
if (server.bind (PORT) < 0) {
serverIsListened = false;

178 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

} else {
printf ("tcp server bind succeeded.\n\r") ;
serverIsListened = true;

server.listen() ;

//listening for http GET request
while (serverIsListened) ({
//blocking mode (never timeout)
if (server.accept (client)<0) {
printf ("failed to accept connection.\n\r");
} else {
printf ("connection success!\n\rIP: %s\n\r",client.
get_address ()) ;
clientIsConnected = true;

while (clientIsConnected)
char buffer[1024] = {};
if (client.receive (buffer, 1023)<1){
break;
}
else{
printf ("Received
Data: %d\n\r\n\r%.*s\n\r",strlen (buffer),strlen(buffer), buffer);
if (buffer[0] == 'G' && buffer[l] == 'E' &&
buffer[2] == 'T' && buffer([3] == ' ' && buffer([4] == '/') {
printf ("GET request incoming.\n\r") ;
//set up http response header & data
char Body[1024] = {};
sprintf (Body, "<html></title>
<body>Hello World %d </body></html>\n\r\n\r",strlen(buffer));
char Header[256] = {};
sprintf (Header, "HTTP/1.1 200 OK\n\
rContent-Length: %d\n\rContent-Type: text\n\rConnection:
Close\n\r\n\r", strlen (Body)) ;
client.send (Header, strlen (Header)) ;
client.send(Body, strlen (Body)) ;
clientIsConnected = false;

}

printf ("close connection.\n\rtcp server is listening..\n\r");
client.close() ;

Debugging, Timer, Multithreading, and Real-Time Programming

}
int main() {
EthernetInterface eth;
eth.init(); //Use DHCP
eth.connect () ;
printf ("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

Thread thread(web_ thread) ;
while (1) {}

}

dkhkkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhdrhdrhdhhdhhdhddhdrhrddhrdrhrdrhrdrhrdrhkdx*x

Further Information about Multithreading and Real-Time Programming:

https://os.mbed.com/handbook/RTOS
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/ APIs/tasks/rtos/
https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/

9.5 Summary

This chapter introduces how to debug, how to use Timer, Timeout, Ticker, and Time,
as well as how to get time and date information from the Internet using NTP
(Network Time Protocol). It also introduces multithread programming and real-time
programming.

179

https://os.mbed.com/handbook/RTOS
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/
https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/

10

Libraries and Programs

Start by doing what's necessary; then do what's possible; and suddenly you are
doing the impossible.
- Francis of Assisi

10.1 Import Libraries and Programs

The Arm® Mbed" developer website (used to be https://developer.mbed.org and now
has changed to https://os.mbed.com) is a wonderful resource for your program. There
are a lot of programs and libraries available. A very good way to learn is to import exist-
ing programs into your online compiler workspace (Figure 10.1). Just click the “Import!”
button from your online compiler. An “Import Wizard” will be displayed. From the
“Programs” tab, search what you are looking for from “mbed.org’, then double-click the
program (or click the “Import!” button) to import! From the “Bookmarked” tab, you can
also import programs from a website and from the “Upload” tab, you can also import
programs from your local computer!

Similarly, you can also import libraries into your program, as shown in the following
screenshot, Figure 10.2. Just click the “Import!” button from your online compiler, then
from the “Libraries” tab, search what you are looking for from “mbed.org” and then
double-click the library to import!

10.2 Export Your Program

You can also export your project to an offline third-party compiler software, also called
toolchains. From your online compiler, in the “Program Workspace,” select the project
you would like to export, right-click it to display a pop-up menu, and select “Export
Program...” (Figure 10.3).

A pop-up “Export program” window will appear (Figure 10.4); just make sure you
select the correct export target and export toolchains (Figure 10.5). There are a number
of popular toolchains supported, such as Keil uVersion4, GCC, IAR Systems, and
Kinetic Design Studio. You can also re- import the programs that you exported; just
follow the steps of importing from your local computer, described in section 10.1.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

181

https://developer.mbed.org
https://os.mbed.com

182 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

I Formmas LPCITEELRCT ¢ ;[Miwt Compuier lmport

L | @ Secure | Mitpe/eambed.com, compiler i, FRD

Program Workspace < Tmport Wizard Program Detalls
o gﬁ" Frograns Import a program from os.mbed.com ' g Bt e e
:':Em'“‘" mbed s&uu:?nummmmmmmawmnmmm L e 22 3 2003
[PROM-KE4F_Digealln v " LastUpdated 22 Jun 2013
(oo Db | i [s | € [moweswwa [3| v 5
progean e chig "FROM-KGAF aan i

FIR
This
Hon
[
Sy
itk
L y Fah
1y WieelessComm_Comelf Rige F 10 17 Feb 20l Xber | FROM-KLIST WiFly Acoess Pomnt iPhone
'y Level_with_PROM-KLOS: FROM-K105: Frensdon & Digockey Maowe 10 ZANONZ0NS Al | Aok Coriroled Zumo R Tracked Vehice

¢
€ W o4 pgelt o1 b oM
Ry, ns ||

1 PROMFSE Netwo..b. ~ Showall | X

Figure 10.1 Import a program from the online compiler.

a - o x
[l Femmare LPOITBSLPC) X [Mbed Compier impen - %
& | i Secore | hitps//os.mbed.com/compiler #ray anetimport_wizasd: a
Import Wizard
) (¥] comple v @ Commit v () Revison |« o« ~ [Hep FROM-KEAF g
Program Workspace < Impor Wizard Published Uibrary Detalls
E%ﬂ'w Import a library from os.mbed.com g e ol
. FROM-KEAF-Flashied mbed mwmﬂﬂwmmmﬂunmm Published m
-.Ermw_um 22 = Last Updated 28 Dec 2014
Soyh | Impts 135
Ferks
Commits.
Aather Imponts | Modified e Dependents
" Dependences 0
'y WiZnet_Library 1627 31 May 2015
nm_—u i
fy ©£3000_hostirnver_moe % 28 Fel 2015 X o Library Homepage
o Wilyinterface et TCP iFly 1 Mok 597 24 Mg 2002 wifly
7 S16820_tuire L-vee DALLAS D518 T w5 052013 e | 70
Yy esph2ee-driver ‘epm ESPE 374 12302017 The | Bttt
oy ESPa0es ESP-01 ESPAZE tover ke 249 3 May 2015 [
i Wiblunchuck schuck WAl Wibiurchick knigk 194 18 Dec 2010 Deserigtion
2 WiConnect 177 i Sen 2015 Host | Library %mm\mm
m e M 139 M IS | T NS D CORA J008 P
< >
B w4 me) [os b K
Ready. n Ry
1 FROM-FE4F Netwob.. ~ Showat | X

Figure 10.2 Import a library from the online compiler.

10.3 Write Your Own Library

A library is a collection of code that is designed to provide certain functions, or to
handle certain hardware components.

Libraries and Programs | 183

a - 0O X
W Femmmane LPCITEELPCY x_;imcmnm- x
« O | @ Secure | hitps//osmbed.com/compiler/#nan: FROM-FGAF_Networkinfo: @ &
Mbed JFRDM-F&4F_Netwarkinfo
Py mew v Pimport | el Save) Seve 0 | () Comple v | @ Commit v () Revision | <3 cu | B % [l Hep FROM-KE4F o
Program Workspace < Program: {FRDM-FOAF_Networkinfo Program Details
E%EW ¥ [Tipe o fiter the bt . O MatchCase () Whole Word | -4 Find omd |
:-a@gn,.b?‘,mﬁle... pme - sae | Tyoe Modiied Memery Ussge
&] B Mew Foider.. led-<tos Published Library mements ago
=] | &2 vew ubrary... oo 0.2KB Gt Source File 23 minutes ago
:g _&“_"“‘_‘““""'" P ea Laary Buld 23 minutes aga
@) | = BportProgam.. CulE
@5 | FrdinProgram... Crl-ARF
[;. R (3 Revisions.... R Flash RAM
{23 miy
;,; rron bl Save an Cxl-ghits Tpe = o
@ [From{ & comm... CoishitC Cece (Fash) S6.5KB 10240 k8
o upate. Code Cata sake na
o Upase Al RO Daa (Fish) 468 LO2OKE
@) Pusish... Cukshiftu
e e outpait for program: FROM-F64F_NetworkInfo () Verbose | Emors:0 | Wamings:0 | Infos 1
By Copy cut-c peription Emor Number | Resource Ia Folder Lexation
3 hess Build Dot
A Rename F2
¥ Delete... el
Comple Otput | Find Resuts | Netfications -
Ready. M | G| By
[mmoMersas petwe_b. ~ Stowst | X
Figure 10.3 Export a program from the online compiler.
® - 0O x

[l Fermmace LPCITEELPCT x [Mied Compder (FROM. X

< C | @ Secsre | hitps/fosmbed.comjcompiler/fnav, FROM-FEIF_Network

Export

Export program
This will enport program FROM-FE4F_NetworkInfo for the
spacified target boded and toskchan.

[mmoMersas petwe_b. ~ Stowst | X

Figure 10.4 Export program pop-up window.

Libraries are crucial in project development, as libraries allow users to share and
reuse the code, so you don’t need to keep reinventing the wheel. For example, as you see
in Chapter 6, if you want to use the combo accelerometer and magnetometer sensor, or
SD card etc., you just need to import the corresponding libraries that deal with the sen-
sor and SD card; you don’t need to rewrite the code from scratch!

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

™

[l Fermmace LPCITEELPCT x [Mied Compder (FROM. X

€ C | @ Seasre | hitps/formbed.comjcompiler/#ran FROM-FE4F_Networkinfo:

[mmoMersas petwe_b. ~

Figure 10.5 Export program toolchains option.

Stowst | X

To create a library, right-click on your program and select “New Library...” as shown

in Figure 10.6.

Enter library name, in this case, I call it “PXMathLibrary”; itll add a folder to your

program (Figure 1

0.7).

B Firmware LPC1768 1PCT X/ 5] Mbed Cor

< C | @ Secure | ntps://os.mbedc

mpiler /FRDM- X\

om/compiler/#nav;/FRDM-K64F_Blink:

Mbed JFRDM-K64F_Blink

[eroM-FesF Netwo..b.. A

P New v) Import | b save I Save Al | (%] compile v | @ Commit v (O Revision | x> x| @ | T | N\ | [L]Help FRDM-K64F 4,
Program Workspace < | Program: /FRDM-K64F_Blink Program Details
My Programs T [Type to fitter the list . () Match Case () Whole Word 4, Find & Buid
[J] FROM-K64F-Flashled = L0
= o | Name | Size | Type | Modified | Memary Usage
¢ main.cpy|) NewFile-.. 0.2kB C/C++ Source File moments ago
(55 mbed | E] New Folder... Library Buid moments ago
FRDM-Ks4F| [Z3] New Library...
7| FROM-Ke4F| £ Import Library... »
(5] mbed-
Cla s8] Export Program... [e133
Q Find in Program... Ctr-Alt-F
srou 4 Prog Flash RAM
(521 Ether| &) Revisions... an-R
(£ rtos Type [ose| max|
(T rx |l Save a Cul-shit:s Usage wa a
(7 targe| & Commit... Ctrl-Shift-C
&) main.cog &2 Update Al.. © Ccompile for stats details
) mbed @) publish... Cerl-shift-U
o done Iputfor program: FRDM-K64F_Blink () Vebose | Erors:0 | Wamings:@ | Infos: 0 ‘
Ea Copy ctri-C Jon Error Number | Resource | In Folder | Location |
A Rename 2
X Delete... Del
‘ ‘ Compile Output | Find Results | Notifications v
Ready. | ms | 8| %

T =

Figure 10.6 Create a new library from mbed.org.

Libraries and Programs

[l Fermmace LPOITEELPCT [Mied Compder (FROM. X
< C | @ Secure compiler/#ran FROM.

Create new library
Ue TS Form 10 CrEEte & new beany

) Piease speciy lbrary name

Ubrary Mame: [Pxiatribeary
Ths libeary wil be created In "/FROM-KEAF_Bink”

[_oc][o=]

[mmoMersas petwe_b. ~ Sowal | X

Figure 10.7 New library name pop-up window.

[Mo Cameiier FRDM. X

L | & Secure | Wipsionmbadoomomoi F_Blink /PXMats Brury o |

Create new file
Use this form to create & rew fle with oo of h edensions

Figure 10.8 Create a new file in the library.

Then add two files into the folder, “PXMathLibrary.h” and “PXMathLibrary.cpp” see
Figure 10.8. Figure 10.9 shows the corresponding contents of the two files. In this library,
it gets two analogue input pins, then uses a function called “mean()” to calculate the aver-
age value of the two analogue pins, and display all the values to the computer serial port.

185

186 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

[Med Comsier FiDAL X
*

O | W Secure | repnonmbeacom compar e PROM-KEL

class PNMathLibrary {
public:
[e] maincop PoathLibrary (PinName pinl, PinNeme pind);
B {5 mbed void nean();
® [FROM-K54F_Dighalln
®

private:
AnalogIn _pinl;
AnalegIn _pin2;

>
Compile output for program: FRDM-K64F_Blink [0 varboss | Emersi0 | Waemngro | Ifesi0
Crescription Error Number | Resource: In Folder | Lecation
< »
Compile Output | Find Resuks | Notificetions B b4
Ready. hi7 @l 7 17 | ms || =
a - O x
B Mmed Comader FRDM K
& € | @ Sacunt | MIEORmMbEREom com e Py, PROM-EE4R Slink POANLSary FAMIThUE Iny.co o
SFRDM-K64F_Blink/PXMathLibrary/PXMathLibrary.cpp
Ty hew’ > B mport | [Sove) Sove Al | (] Comple '~ | @ Commit'~ (3 Resision |~ A SN Dk FROM-KE4F
Program Workspace ¢ | || D) pxmathiibeary.cop % | [1) PRMathLibrary.h =
= B my Prograns
L] FRDOM-KGAF-Flashied
a8 FROM-KG4F_Blink . , 4 e B
lem FiMathLibrary::FMathlibzary (Fin¥ane pinl, FinName pind) : _pinlipinl] ,_pind(pind){
[« PXMathLibrary.cpp * ;
(4] PrMathLibrary.h =
_E_J main.cpp void FXMathLibrary::meant) {
& mbed) float x = pinl.read() ;
® [FROM-K54F_Dighalln float y =_pinZ.read() ;
® FROM-KE4F_NetworkInfo float z = (x + y)/fi.0f;
printd ("10. 3£ \t $10.3f \t $10.3f \n\z", =, ¥, =)
1
¢ »
Compile output for program: FROM-KE4F_Blink [0 verbose | Erversi0 | Warmegro | om0
Crescription Error Number | Resource: In Folder | Lecation
3 T
Comgile Output | Find Resuts | Notifeations &
Ready.

ing wm | 13 | s |G| Ry

Figure 10.9 The new library program header file page (top) and CPP file page (bottom).

Finally, you can call you library and use the “mean()” function, as shown in
Figure 10.10. In this example, the two analogue input pins are “A0” and “A1".

Figure 10.11 shows the “Tera Term” screenshot of the three values send to serial port,
the first two values are the analogue input pins “40” and “A17; and the third is their
average value.

Libraries and Programs | 187

o
Mbed /FRDM-K64F_Blink/main.cpp
F hew ~ P Import |] Seve u:;mo Al (%] Comgile ~ | @ Commit ~ (O Revision F.Y % | [Help FROM-KE4F
O © | [poMathLibrary.cop % | [2] PXMathLibrarg.h | [1) maincpp
B vy programs
% [FROM-K54F-Flashiod
| FROM-K64F_Blink
= (1) FXMathLibrary Fifathiibzazy px(A0,AL)7
o] PXMathLibrary.cpp *
s PNMathlibraryh* |
¢ main.cpp *
{5 mbed
% [FROM-K54F_Dightalln
| FROM-KS4F_ NetworkInfo
Compile output for program: FROM-K54F_Blink Verboss | Emorsi0 | Woenngs0 | Infos:0
Description Ervor Number | Resource In Folder Location
< »
Compie Ouput | Find Resuts | Nobfications v
Ready. 12 eol 2 12 [s || B

Figure 10.10 The main.ccp file page.

COM4 - Tera Term VT — O >

File Edit Setup Control Window Help
ald

0.045
0.045
0.001
0.001

0.001
0.001
0.001
0.001
0.001
0.001

Figure 10.11 The Tera Term outputs.

188

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

10.4 Publish Your Library

To publish your library, just select your library, then right click to display the pop-up

menu, and choose “Publish’, see Figure 10.12.

A “Revision Commit” window will appear, and type in the commit message, as shown
in Figure 10.13. After clicking the “OK” button, a “Publish Repository” window will

] b Compier DU %

€ @8 Secen | hipronmbedimm compius e RO

@ !

Mbed RDM-K64F_Blink/PXMathLibrary

TiMew v Pimooet | b s I Seve it | (5] Comoile | @ Commit v (D Revision | 0 s | B | s | (heo FROM-KOAF 4
Program Workspace < | Library: [FROM-KG4F_Blink/PXMathibrary | Uibrary Detalls |
B my Programs v () Match Case [Whole Word -q. Find |
5 [FREMKEArFlashind = Summary
2 [FRDMHE4F_Birk Hame Size | Tye Hodfied Hame Pbaibrary
2@ PN in] 00K GC++ Souroe Filke ORMNES 300 Last Modifled 5 days, 6 hours ago
e . W ungublished
[e B3 Mow Foldes... fercbmdil ot . EENES e Fuvision 10000000+
() e B0 Mw Library... St uncormmitied chénges
D mbed [7 impart Libeary... » |
& |
m% mmmmz & Bt Lbary.. P i The documartationis ot of dote ||
4 FedinUbrary_. CFARF o Updete @ Commit () Revisions
g R) Bport) bl e
2.1 Cornvet to Folder Description
I seve cut-shin-5
@ commit,.. Crhshin-C 3]
=5 Lipdste AIL..
- L = e T T T
= clone... fscription Enor Number | Resource In Folder Lecation
& ox kX
B Cooy i
A Reeme] ¥
¥ vebete... | ey 8 =
Reedy. s | 6|y
Figure 10.12 Publish a library from the Online Compiler.
by o Y

] b Compier DU %

€ 0 0 [@ Securn | hitpssonmbedtom compies e TROM-EG4F Bk PXMahLsrary

Revis

Revision commit to "PXMathLibrary”
This will commit changes to the revision history of the program.

Figure 10.13 The Revision commit pop up window.

Libraries and Programs

appear, see Figure 10.14, make sure all the information is correct, and click the “OK”
button. A confirmation window will show the URL that your library is published on, see
Figure 10.15. That is it!

[Med Comsier FiDAL X

L © | 8 Jacunt | MIpEOLMDEACOM Compiar/ e, PADM-LEL Blink PMatL Sy L I

Fublish Repository
Publich repository
This will publish your repasitary on the mbed wabsite, where
other mbed users can import it.

(D Plamse spacify repesitery raene and deseription

Name

I
‘mmmwﬂ
[

:‘w _ Program @ Library

Publish in & My ccourt

Visibility @ Public () Public (Unlisted) (Privatz g
| Apache 2 licenced &

[|

Figure 10.14 The Publish Repository popup window.

[Med Comsier FiDAL X

N YAl reym—

Figure 10.15 The Publish Repository confirmation popup window.

189

190

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™
10.5 Publish Your Program

You can also publish your program, in a similar way as you publish your library, see
steps shown in Figure 10.16, Figure 10.17, Figure 10.18 and Figure 10.19.

[Med Comsier FiDAL X

L3 O | 8 Secum | e oLmBeLoom, o 1w

Mbed JFRDM-K&4F_Digitalin

Fumew ~ Py import | L sove I Sove st | (] Complle '~ | @ Commit v (3 Reision | 0 - | # ~ | [+ FROM-KEAF
Program Werkspace € | Program; [FROM-K64F_Digitalin | Program Details
B v)) S —
%m ograms ¥ [Tvee to fier the list [Mateh Case L) Whele Wond _'-J»M| | eusa |
@ Bk | Name see | Type | Modfied Name FROM-KB4F_Digitalln
8 T Hew e h.eon DIKB CIC++ Seuee File Sdoys, Ghoursnge | | Created S days, & hows a0
ﬁ{:’)m ﬂ"‘ww b Library Buld 5 days, 6 hours ago | | LastModified 5 days, 6 hours ago
[FROM-Kp4r L New Library... | xm 'ﬁg
P Iwport Libeary... 3
Ranvigion ~1:0000000+
e8] Export Program... =403 Stotus uncommitted changes
%, Find in Program... CrkARF
(3 Revislons... kR /1y The documnentation is out of date
=Y Curl-gift-5 o Update @ Comenit (3 Revisions
gmm Qrl-hiftC) Bpot (@) Publish 4 Homepeoe
] Puslish... kS | Desaiption
H Cona... = Rl
By ooy U b output for program: FROM-KS4F_Digitalln [0 verbose | Emoesio | wa
Y — 2 [P Evror Number | Resource | In Folder
¥ Dolota... Dol
<) ¥
| compite ouput | Find Resuts | Netiications & v
o | | s ||y

Figure 10.16 Publish a program from the online compiler.

[Med Comsier FiDAL X

N R T e pm—

Revision commit to "FROM-KE4F_DigitalIn®
‘This will comenit changes to the revision history of the program.

D Flense specfy commit message

Pty Ma's Digital Irpudt Program

Figure 10.17 The Revision Commit pop-up window.

Libraries and Programs | 191

[Med Comsier FiDAL X

€ O |8 Secon | g onmbecenn cer

Fublish Repository
Publich repository
This will publish your repasitary on the mbed wabsite, where
other mbed users can import it.

(D Plamss spacify repesitery raene and deseription

Figure 10.18 The Publish Repository pop-up window.

[Med Comsier FiDAL X

O | B e | Wi ekmbescom comp e P FREM-EE4 Eagralle CE 1N

Figure 10.19 The Publish Repository confirmation window.

192

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™
10.6 Version Control

Version control is very important in programming, especially for a large project, where
a lot of Things could go wrong. The Arm® Mbed" online compiler comes along with a
powerful, built-in version control. With version control, you can easily view the history
of different versions, compare the differences of different versions of your code, and go
back to the previous version if necessary.

To use version control, from your online compiler, select the program, then click the
“Revision” button. A “Revision History” window will be displayed (Figure 10.20). On the
top of the list is you current working set program.

You continue to work on your program (Figure 10.21); when you are ready to finish
the current version and move on to next version, just click the “Commit” button on the
top. A “Revision Commit” window will pop up. Type in the “Commit message” and click
“OK” button (Figure 10.22). Figure 10.23 shows the finished version of your program.

You can keep working on your program (Figure 10.24). In this case, if(din.is_con-
nected()) is added to your program. When you are ready to make another version, again,
just click the “Commit” button on the top. “Revision Commit” window will pop up, type
in the “Commit message” and click “OK” button (Figure 10.25). Again, Figure 10.26
shows all the versions of your program.

You simply repeat this process throughout your development, and whenever you
would like to view the previous versions, just click the “Revision” button, and all the
revision history are available from the “Revision History” window. Figure 10.27 shows a
further updated program, with else structure added. Figures 10.28 and 10.29 show all
the versions of your program before and after the else structure is added.

You can then compare versions, merge versions, and even switch back to the previ-
ous version. Figure 10.30 shows how to select the previous version, and Figure 10.31
shows the previous version program code, which is exactly the same as shown in
Figure 10.21.

Revision History
|2 Comglle ~ % Commlt ~ | (5} Reviion s 11 Help FREMKGAF
€ Revision History Reviskon n/a (umcommitted)
Local Revisions for "FRDM-K64F_Digitalln® Comment Wiorking Set

[Viten new
- s et . . Dote e
iy ol sevnioes far pucgure “TECM KAl _bagtad

@ comeat [Dcowd (7] Compe [changes Fp Uneschanged 13

0o -7 ekt » B 4 changus
p— defndt (empry repositery) —p——— —
@ mbedbid '
Unpublished Repository o s Cugony: s
MEET 11y epontioy i st and 8, o b compared o e o
& Pt
ms .

Figure 10.20 Revision History in your program page.

Libraries and Programs | 193

B ——

* 8 ATt Compile bt o g P MALRE_Sigitatin L vetese B8 | W8 | b
3 L Locaten
G G R
- - - - 0 R L i R e R R ol 4B -

Figure 10.21 Your current program page.

D et e) P et e |] e it . " ||

Figure 10.22 Revision Commit pop-up window.

(¥ Comte B Comerit = | G Beiion| 0 oo | B ~ | [T1Hes RO
€ Amakon Histary Fmdniom 0cfictad3 (HoAaZE713)
2 LLocal Revisions for “FROM-K64F_Digitalln® Comrest Porey Yoo gt put ¢

ﬁ aen et o0

Date LGOS0 124542
Lty | s fn orm “TROM:
o - i gt Fles changed 2
8 ot 5 Oars | [Corcmne [s | 52 5wt 5 et | & Mo & U cwge 13

‘@mm, A

3 msssaronn v ®|] mowess oo s | [s rooe s 1]

Figure 10.23 The finished version of your program shown in Revision History.

194

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

JFROMKSAF_[hgitalin/main_cpp
(5] Comole I Comerit ~) Bkion) W B (e FROME

TRDM-AA Aot

DLOLLALIN GARAETI

i) wancom iz madni) |

G et hille

s

A e l103

5 PATPheytee Commupile sstput for program FROM-KEAF_Digialln L b Dewnd | Maweond | e d

v | CompleOuiat Pt ety | homcatcrs @ -

Figure 10.24 Your updated program with if (din.is_connected()) added.

S it e *| [it st e | [et it e | s sttt o * - -] e © 8 b+

Figure 10.25 The Revision Commit pop-up window.

% | (£] Comote v 8 Comrrit | 3 Bt | =

Frogae Warkepaoe © Reision History Bvirion 1066180 [SHE1EMIELES)
S by Frogans = -, Local Revisions for “FROM-KE4F_Digitalln” Comrsest s cosemctod used.
= [s askgn n =
K\:-l . [P u‘: 0080506 12.30:30
dharged 1
-Bsmwm B Comart [Dcaed | [Compue [hanges. [0 Swtch G/evert | Mo [y | Umecmmand -
wanap
) mied Gt e W Comees b
=2 rrsae oo o O @ 106618 momants ape DrPorryoac B [T 0[] _commacted used. [A3 Changes
,gm""-‘" - O @ R 4w o [e eye—— @ mancrs —
[Fmanes oo
® L memsser_raossnog
= [rasane
E] menw

by e ‘@wwf Irewes 2 Otene: w0

A S,

Figure 10.26 The updated versions of your program shown in Revision History.

Libraries and Programs

FFROM-KA4F_Digitalinmain_cpp
A B ke

(5] Comole ~ M Commit ~ () Roion w3 o

DLOLLALIN GARAETI

iz madni) |
whille ity

Commapile sstput fo program FROM KEAF_Dighalle L vobow Dot | emmd | bdmd
Cuoscrigton o Bhamter | Resowos | In Fokder Locaton

PR r e P T — -

W E R

= 13 mouesr o e | [msssessponn s *|] nowasr o e *|] mewesrponn s | [s nous s |) mese rooe s e ——

Figure 10.27 Your further updated program with else structure added.

mbed
e T oot |) e 1 S

(5] Comete 8 Commit | 5 | <1 0
Frogram workspacs © Suision sestony Hrresson 16003 4 + {uncommiTied)
= 1y Fgrana. = [, Local Revisions for “FRDM-KE4F_Digitalin® i W g it
- | Do

= [o sl & comet [Dacard | () Compmre [F Changes | 1 S | | s chungad 3

50 o | @ Anpstitahad Reposkry .~ S

e v G

Ty v Byt fod s] St (5] Comphe v 8 Corwnt | tlmicn| < oo | v [iwe o g
Poexgrans Workipate < awvan Hutery Beiion PdefiSda (Sl ss)

= . Loxal Revisions for “FRDM-KE4F_Digitalln® [———
\“3""“" a Lo b o o oo "FROS Kiof_Dighalle”
Bl e 8 comen [vt [comge [Oarges 5 5utch 65 mot |, e ===

Mooy, e EH e

D et e "] P e .

Figure 10.29 The versions of your program after else structure is added.

195

196

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

mbed

P Mew ~ T Impart
Program Workspace
= By Prograne
= [FRom R nakogout
¥ mancpn
'\JM
=@ FROMSAF_fmnlogin
) o
0 mbed
=@ FROM-SEAF_Dighalie
1) mancon
& mbed
[rone_bioraout
e
= R s

& e
- -’_! FROM-S5AF_SDCard
=) SDFtesystem
[Clssses
Kl PATPRetisterm
1) sorsystecn
x) SUFsesystenn
1) mancpp
(L mbed
% 3 FROMasE_serial
% [rros-r_ser
i ,‘i hsoh-on-sewample- blinky
=1 [mbed_bnky
o) maincpo
) mbed

Ready.

(%) Comple ~ | Comeit = | (3 Rmbien |+

<

Revision History

Revision History

~ [Tmelo

Local Revisions for "FRDM-KE4F_Digitalln®

Lisking focal pevisions far peogram “TROM-KSAT._Digitalin®

& comea
G Biison | When

0 B ThcmStamonsits sgo
) Lo0Mb 4 mamses 00

Wee

DrParyiao
by

[compme [A changes | (5 Swach (5 Revt L Mespe.

Comment
defad %) ek added

s _conentod e,

FROMKSAF

Revision Diffcta2? (Wela 2248723}
Comment Py Xiacs dighal ingut §
When 8 minuies ago

Dote U 06 12ASAL
Files chonged 2

Lines changed 13

Revescrs g

1 Al Changes

m—— —

@ O Cficlad? B minskes mo Orferrydion I Peavy Xioo's gkl ingal praram & mieod bid [

Incoming: s Cutgong: s

ms EH R

o o

oG 0T e

s asa oo | () rousspe e

Figure 10.30 Select the previous version.

% (3 FROM-F_PAOSERIOG
= (3 rroaosr_wm
A
8 () mbed
= B FROMS54F_SDCard
1 50 SOyt
%] Clsses
D PATPeSysbem.

LE] Complle v | I Comelt ¥ | () Reviion |«

<

Revision History.

vy SRR

Revision History

a

 lHelo

‘Changes to program "FROM-KE4F_Digitalln in revision "0:ffc4a22”

\Z ey charges in smdsion “0:Bodall « Parry Xino's dightal ingust progran™.

Digitalin dinb7};

it madng) {
wile(t) |
printf({"zan
Malt(e.25);
)
]

", din.read());

Mot nooas | [e oo

oDk e "

.

FROMKEHF

Revivion 0-#cda?? (Hoda? 28721}

Comement Perry Yiacs digtal ing ¢
Whes 8 rintes a0

Dote 0160905 12:45:42
Files changed 2

Lines changed 13

B ey

F——
& mbedbid [l

ms H R

PR PO

PR e

T

Pt T

Figure 10.31 The program code of previous version.

Further Information about Version Control:

ook oo s *| (] MO0 e

PGk T e

https://docs.mbed.com/docs/mbed-os-handbook/en/latest/collab/versions/
https://os.mbed.com/docs/v5.6/tools/collab-online-comp.html
https://os.mbed.com/docs/v5.6/tools/version-control.html

10.7 Collaborations

The Arm® Mbed™ online compiler also allows multiple users to work on the same pro-
gram, i.e., collaborations. To add users to your program, first you need to publish your
program, then from the “Program Details” panel on the right hand side, click “Homepage”

https://docs.mbed.com/docs/mbed-os-handbook/en/latest/collab/versions/
https://os.mbed.com/docs/v5.6/tools/collab-online-comp.html
https://os.mbed.com/docs/v5.6/tools/version-control.html

Libraries and Programs
mbed JFRDM-KEAF_Analogin
P Mew B It (¥ Comgte v @ Commit v (D Redsion <1 s 4 [l FROM KE4F o)
Program Werkspace < Program [FROM-KGF_kealagin Program Datalls
—£ hy Prosgrarm. ¥ [fweton Match Case) Whole Word A P
[FROM-KSAF-AnalogOut < Sarmmary | musd
"5 FROMHAR_Analogln Moses e | Tew Molied Hare FROM-KESF_Anakogn
03 rromr Digtaln [} mainsee BIUB CICes Soumre File 2 henars, 3 einashes 2 Covated A dhn, 4o g
FONNAP DM || G) e Uriary Build 4 s, 4B g Lovt Mocfied 2 huonrs, 2 miesabes 200
,_.; PR PP PO, LotDum ey, I ago
% [FROM-HF_PM AL
‘; FROM-K5AF_SDCad Revtion P
PR AF Sl Satim pros—1

(3 rromr et

’i«mmwnn
% [erbed iy -
] e Bove Oa((@rmme)

Compile output for pragraes; FROM KGAF_Anatogln [S S R P
fL— Ervos Mhbew Amorrs I Fokder Location
¢ 5 | Compie Outp | Fid Resits | Motmcations B =
Fsacty. w EH =
A b * [ROt e *| (] Aok o *] ke ocar_e *|] MON STt | (] oMot | [WA s | () MO i " 2 e =

Figure 10.32 The Homepage button on the right-hand side of your program page.

| =} - o X
5 MO Sralgin |V %
/e mbacl coum i scees,TirPermyXiaocodde FRIM-CA42_Analogin/admin
arm MBeD Mbed OS MbedCloud Partner Portal .
O5Home Hardwarew Code Documentations Questions Forum m “ DrPerryXiao~
Users » DrPerryXiao » Code » FRDM-K&4F_Analogln » Admin
1 Perry Xiao /@ FRDM-K64F_Analogln Repository
toolbox
Perry Xiao's analogue input program
Impertinte Compiler -

**Dependencies: € mbed
& Export to deskiop IDE
Home History Graph AP| Documentation Wiki Pull Requests Admin settings
© Build repository

The bas | CS & Send Pull Request from here
& Make featured

Repository FROM-K&4F_Analogin

name: g §

+ Following
¢ Be careful
Changing the repesitory name will also change the repository URL) Clone repository to
3 desktop: s

Figure 10.33 The “Admin settings” tab on your program repository page.

button, to go to your program homepage, also called your repository homepage
(Figure 10.32).

Select the “Admin settings” tab (Figure 10.33), and somewhere in the middle of the
page, there is “Privacy Settings.”

In the “Privacy Settings” (Figure 10.34), you can add one or more developers to your
program. In this case, two developers are added, “Perry Xiao” is the original developer,
and “Johnny English” is the additional developer. Remember to click the “Save changes”
button to save the changes!

197

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

198
il o ®
=L S LT
+ /vt e eomLvers DirPerry i m=
Dependencies: "1
Privacy settings Followers: 0
¥ Public
Repasitory visibility:
i ik Choose the visibility of your repository (mare info) Deve | 0 pers
JohanyEnglish Jobnry English) < DrPerryXiao (Perry Xiac) '
Developers: Perry Xiao
These users will be able to read and write (push and pull) your repository. ‘ Johnny English
Read-only access
Software
These users will be able to import your repository and read the wiki. o A
licencing
Save changes Cancel changes iﬂ:C'rmC]t iO n
Copy repository to team
. ™
his will also move any associated questions and discussions, and redirect this repository to it's new
location. men source
Figure 10.34 The“Privacy Settings” on your Program Repository page.
mbed Import Wizard
) [« A ~ | [Hnep FROMHHF g
Program Workspace 4 Bmport Wizard Progeam Details
=] My Programs T ™ Ham: FROH-KEAF_Arslogin
T [———— Mapw-nh-mb:m | g uthor -
mbed i T P | Imports | Pmshes o6spInie
Lt Ut 0O 340 2036
Programs | Libzaries | Boskmarked | Uplosd FRDM-KEAF_teokogln | Search | tmperts o
g F_Amalogln® :\:‘“ 5
e Togs Autten gty | Modfed Oescrpiien Dopenderts ©
i Mert Systim 2.0ussing | E H B30 ke 3016 bt FAF b ¢
D T T N M T T T e R
) Apockn 3 Licersa
e Program Homezage

Dvaeriotion
(ST r————

R T R
mws EH

3 o peor e *|] s e e °|) o moo_se *| [oouaspeon e [mownenosn s [oo e)) mowssnoes s *| [souss o s Y e

Figure 10.35 The additional developer can import your program into his workspace.

The additional developer will then be able to import the program (Figure 10.35) into
his own program workspace, modify it, save it, commit to a version (Figure 10.36), etc.
You will then be able to see the additional developer’s version in your own Revision
History page (Figure 10.37).

When ready, the additional user can publish the program back to the original reposi-
tory homepage (Figure 10.38). Figure 10.39 shows the publication confirmation pop-up

window.

Libraries and Programs

s g s *|] it it °|] st it [et e *| [s it e |) it putnt e s it i *| | e e+ B b+

Pyt = T gt | ol e] e 28 | (] o v | 8 ot~ | @ Rewson]| <0+ | | [ose g
Program Workigaoe b Rorvision History Mavishen LISTA3AT (STAMATM00T)
B b mcgrume . Local Revisions for “FROM-KS4F_Analogln® e]
@ g W 8 bt g
] maincen - Dicter 20060906 160536
D e Lt ol vt Sor poogram “TRDM-EB4_Arakaglh = 5
[EDamontepe | g corme [Dot | [Compae [Cnges [Bsuch G5 et By e 3
Geagh Ravislon | Whan Wi Conment FReision log
@ (30 150434 W mimtenage Miveyfroh et to AL AD @ 8 g
2 (D@ a7 ¥, § mwees age DrPeryi Perry M Aralogpse gk peogren # mencm =

| #4E_Analogln _s esewwd | O 0
mi

o Uit ot et From.. 85, Compars Wi | (] Pubiah e
Ghgdy Faskiins | Wes W Chnmand
Ry, w R
] . .) I e i e e I w0 = - Frerpa—

Figure 10.37 The revision history in your program shows additional developer’s revision.

Fublh repoattary
This wil g changes i RO HO&_Aruknin o ol
raposRory ah Dy e/ FROM 1 Akl -

[t

o o =

D et e) e e e |

Figure 10.38 The additional developer can also publish the program.

199

200 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

Publish Repository

L] mROMAEROMT—n T L] mOuAME R e T L] OMKME RO L] ROURME DT e " L] oUW e 7 L] ROV DT "
[e T —— = =

‘lu

Figure 10.39 The additional developer publication confirmation pop-up window.

mbed /FRDM-K&4F_Analogin

TINew ~ B dmport | b Svo B Svo il | (3] Complle ~ | & Commit ~ (D Revislon |« | | [Helo FROM-KE4F
Program Workspace < Program: [FROM-K64F_Analogln Program Details
= B My Programs Y [Troe to fiter tha st . [Mareh Cane () Wik ierd L Fnd | 1
& [3) FROM-K54F 2 = | - 8 v [JEREC
= g} Eﬁf Name Sze | Type Modiled Hane FRDM-HEAF_AnslogIn
¢ maingm [main.cop 02K 0=+ Source Flie 3 hours, 3 minutes agn Creeted 4 iy, 4 hours 390
{23 mbed 5 mberd twary Pl 4 days, 4 hears Last Modified 3 heours, 3 minutes a0
mﬁmmmumun @ st Lot Built 3 days, 3 hours a0
B[] FROM-KSSF_Digitaltnst URL Dty line FROM-KEAE fy
B [FROM KSAF_FOSE700(Rivisinn L=
FROM-KE4F_PiM Statis # Teoring changes &
FROM-KGAP_SOCard
FROM-KS4F_Serial oF Update @ Commit ([Revisions.

I FROM-kAF 521

JEDwrne-frdr_gpio & Bport (@ Publsh §38 Homenage
rbed-os-exarrple-blinky Description

bed_blinky

EEEEEERE
X6

Compile cutput for pregram: FROM-KS4F_AnalogIn L Werboce Emors:® | Wamings: O Irfoc: 0
Description Ermor Numbsr | Rescurce In Folder Location
< ? | Conlle Gulpd | e Resadly | MMlun- -
Ruodly, s |G| =
0 eoswsm poatpn 7 [0 moucs poanton 7L [eosasmpoairopa T [spsose nosw e (7] [mosoenosrge] [o ncokpe 2 Douslonciak, 4

Figure 10.40 The“Update” button in the “Program Details” tab.

After that, when the original developer (you) log in, you will see an “Update” sign
appear on the corresponding program. After you click the “Update” button in the
“Program Details” tab, the program will be updated to the latest version (Figure 10.40).
By clicking “Revision” button, you will also be able to see the revision history
(Figure 10.41).

mbed Revislon History

Libraries and Programs

Figure 10.41 The updated Revision History.

Further Information about Collaborations:

https://os.mbed.com/docs/v5.6/tools/collaborate.html

10.8 Update Your Library and Program

) Hew = P Import | | (2] Complie ~ | @ Commit ~ | () Revision| = # | [l He FROM-KEAF 4
or < Revision 1:5743047 (5743c474c087)
& & My Progreem ~ . Local Revisions for "FRDM-KG4F_AnalogIn™ Commart. Ao M)
[penmKsar-srslogou @ Waen 24 Lo A
= [FROMKBAF_Ansiogin 5 Dake 20150806 16:05:38
o Listing bocal riiskons for “PROM-KAAE. !
&) mencon ottt ot Skl Fies changed 1
5 moad B Commit) Comnesee: 5 Swich 45 Revent Py | Lneschenged 2
[FRDM-KGAF_Digitalln = Bowo | & = o
 Lg] FROM-KGAF_DigialOnt || Graph Rintskem | When who Communt Revision log
:? FROM-RBAF_FXCESTO, Y 1:5743c4 14 minutes age JohnmyErch I ET 8 (7] Al to A0 B A changes
= m"ﬂ:m“ . CeS2H6817 3 hours, 3 mhutes ago. DiPerryidao | Perry Mac's Analogus Ingut program Z maince -_—
* FROM-KBAF_Serial
[FROM-KGF_SP1
A IEDemoefim_gpin
= ribed-os-mawmgle-biinky
B9 A mbed_blinky
G wty_pstowerd
Remote Revisions for DrPerryXiao FRDM- | memnzo | ouseso
K54F_AnalogIn
MBED | g incoming ramota rovisions trat aron: prasank in yous local roskory
Upedete g Update From_. | %2 Compare With . | (@] Publish
Guaph | Revision When Wha Comment
< »
Ry s |6 |y
[mepacias POSET oe T] SROMEE POSET ke T [POMCEM FOOLAT.me T | MIOMGAS DOUT_be T|] MO RONT be T[] MRDLLORE POSET_be & Posidrerianie, *

Whenever your library or your program has a newer version available, a green cycle
arrow will appear on your library or program icon (Figure 10.42). To update, just select
your library or program and click the “Update” button on the right-hand “Program

Details” panel.

mbed
Py e~ P et

Program Werkspace
= 8 vy ivograrn.
= [Faom sner Assiognun
) mancp
% () mbed
= [rotme mer kg
a] mancpp
<R >

a] men.cop

[Pt anet_ragtacns
o [P noer ez
= (3 oo moar ot

= ot by
1) mancop
%) et
Rty

FFROM-KEAF_Digitalin

| i

Compiie cutput for program: FROM-REAF_Digealin

Durgtion.

Comete Outzas | Find Ronts, | Noatcatiors @

(o

mments a0

5 iy, 5 bours e

[

FROM-AAE
Program Detads
Pt

A ey | iukd
R FROM-KAF_Digitalin
Crosted 5 s, % howrs 20
Lt Mo S et 6
LoDl 4oy, 4 o
[t s
R oRcaazz
Sats = reyven s avadabie 1

1, Thw dcrmontation b cut of dote

@Fm—- (2 Bandierns

o Emort @] Rublsh o

Dcrption,
=
Resorce I Foler Rcaion
ms =

ot o s "

PR T

[y

O e

Ok T b "

P IOT e | [T O s

O b £ o shdoucioats. *

Figure 10.42 The“Update” button and green arrows on the right-hand “Program Details” panel.

201

https://os.mbed.com/docs/v5.6/tools/collaborate.html

™

202 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed
Further Information about Arm® Mbed" Libraries and Projects:

https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/dev_tools/online_comp/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/getting_started/blinky_
compiler/

10.9 Summary

This chapter introduces how to import libraries and programs, how to export programs,

how to write your own libraries, how to publish libraries and programs, how to perform

version control, how to develop programs through collaborations, and how to update
. . . ® ™ . .

your libraries and programs in the Arm™~ Mbed = online development environment.

https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/dev_tools/online_comp/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/getting_started/blinky_compiler/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/getting_started/blinky_compiler/

203

Part Il

The loT Starter Kit and loT Projects

In This Part
Chapter 11: Arm® Mbed " Ethernet IoT Starter Kit
Chapter 12: IoT Projects with Arm® Mbed "

11

Arm® Mbed'" Ethernet loT Starter Kit

It is never too late to be what you might have been.
- George Eliot

The Arm® Mbed™ Ethernet IoT Starter Kit comes with two components, FRDM-K64F
development board and mbed application shield. As introduced in Chapter 1,
section 1.4.4, the mbed application shield has many useful features, such as 128x32
LCD, joystick, RGB LED, two potentiometers, a speaker, three-axis accelerometer, and
LM75B temperature sensor. These features are great for developing IoT applications. To
use the kit, you will need to mount the mbed application shield on the top of the FRDM-
K64F development board, and make sure all pins are fully pushed in (Figure 11.1). The
NXP LPC1768 and its mbed application board, as described in Chapter 1, section 1.4.1,
provide many similar features to the IoT Starter Kit, so for the purpose of backward
compatibility, most of the examples here are made to also work on the NXP LPC1768
and its mbed application board.

11.1 128x32LCD

The mbed application shield’s onboard 128x32 LCD (liquid crystal display) is con-
nected by pins D11, D13, D12, D7, and D10 to the FRDM-K64F board. Following is an
example LCD program, which prints text “Hello World” at (0,3) position on the LCD
and prints a counting variable at (0,15) position on the LCD. In this program, you will
need to import the “C12832” LCD library (https://developer.mbed.org/users/chris/
code/C12832/).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

205

https://developer.mbed.org/users/chris/code/C12832/
https://developer.mbed.org/users/chris/code/C12832/

™

206 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Figure 11.1 The Arm® Mbed"™ Ethernet loT Starter Kit.

R R RS SRR SRS R SRR SRS SRR SRR SRR RS EEEEEEEERE SRR RS EREEEREEEEEEEEE SRR
// Example 11.1

#include "mbed.h"

#include "C12832.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
C128321cd (D11, D13, D12, D7, D10) ;

#elif defined (TARGET LPC1768) //LPC1768 + Application board
C12832 lcd(p5, p7, p6, p8, pll);

#endif

intmain ()

{
int j=0;
lcd.cls () ;
lcd.locate(0,3) ;
lcd.printf ("Hello World");

while (true) {
lcd.locate(0,15) ;
lcd.printf ("Counting: %d",j) ;
J++;
wait (1.0);

}

R IRk i kR ki

Arm®Mbed™ Ethernet loT Starter Kit

Exercise 11.1

Modify the above program so that it displays your name and your telephone number on
the LCD.

11.2 Joystick

The mbed application shield’s onboard joystick is connected by pins A2, A3, A4, A5,
and D4 to the FRDM-K64F board.

Following is an example program for the Arm® Mbed " application board that uses
the joystick button. It reads the joystick inputs and print correspondingly to a computer
through a serial port.

R S S R S S

// Example 11.2
#include "mbed.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
DigitalInup (A2) ;
DigitalIndown (A3) ;
DigitalInleft (A4);
DigitalInright (A5) ;
DigitalIncentre (D4);

#elif defined (TARGET LPC1768) //LPC1768 + Application board
DigitalInup (pl5);
DigitalIndown (pl2) ;
DigitalInleft (pl3);
DigitalInright (pl6) ;
DigitalIncenter (pl4) ;

#endif

intmain ()

{

while (1) {
while (1) {
if (up) {
printf ("up\n\z") ;
}

if (down) {
printf ("down\n\r") ;
}

207

™

208 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

if (left) {
printf ("left\n\x") ;
}

if (right) {
printf ("right\n\r")
}

if (centre) {
printf ("center\n\r")
}

wait (0.2);

} }

Rk b Ik I R R kR kR o R Rk b ik

Exercise 11.2

Modify the above program so that it displays up, down, left, right, and press down on
LCD when the joystick button is pressed.

11.3 Two Potentiometers

The mbed application shield’s two onboard potentiometers (pot 1 and pot 2) are con-
nected at pin A0 and A1l of the FRDM-K64F board. Following is a sample code to dis-
play the two potentiometers values on LCD.

R R IRk kR ki kS ki

// Example 11.3
#include "mbed.h"
#include "C12832.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
C128321cd(D11,D13,D12,D7,D10) ;
AnalogInpotl (A0) ;
AnalogInpot2 (Al) ;

#elif defined (TARGET LPC1768) //LPC1768 + Application board
12832 lcd(p5, p7, p6, p8, pll);
AnalogInpotl (pl9) ;
AnalogInpot2 (p20) ;

#endif

intmain ()

{

Arm® Mbed™ Ethernet loT Starter Kit

while (1) {

lcd.cls () ;

lcd.locate (0, 3);

lcd.printf ("P1:%10.2f", (float)potl) ;

lcd.locate(0,15) ;

lcd.printf ("P2:%10.2f", (float)pot2) ;

wait (0.01);
}

}

Rk b Ik b S R Rk kI R Rk R R I I R I R

Exercise 11.3

Modify the above program so that it displays the sum and differences of two potentiom-
eters on LCD screen.

11.4 Speaker

The mbed application shield’s onboard speaker is connected at pin D6 of the FRDM-
K64F board. Following is an example code to play the sounds on speaker, ranging from
2000 Hz to 12,000 Hz, with 100 Hz interval.

khkkhkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhkdrhddhdhhdhhdhddhdrhrdrhrdrhrdrdrdrhrdrddx*

// Example 11.4

#include "mbed.h"

#if defined (TARGET_K64F) //FRDM-K64F IoT Starter Kit
PwmOut speaker (D6) ;

#elif defined (TARGET LPC1768) //LPC1768 + Application board
PwmOut speaker (p26) ;

#endif

int main()
{
for (int i=0; 1<100; i++) {
float £=1*100+2000; //frequency 2000 Hz to 12000 Hz
float T=1.0/f; //Period
speaker.period(T) ;
speaker =0.5;
wait (0.02) ;

}

khkkhkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhkdrhddhdhhdhhdhddhdrhrdrhrdrhrdrdrdrhrdrddx*

209

™

210 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Table 11.1 The Frequency of Music Notes.

C D E F G A B

261.63 Hz 293.66 Hz 329.63 Hz 349.23 Hz 392.00 Hz 440.00 Hz 493.88 Hz

In music, the frequency of notes can be calculated by the following formula:

n—-49

f(n)=2 12 x440Hz

Where # is the n™ key in piano. The note middle C is the 40™ key in a standard piano,
and has a frequency of 261.63 Hz. Table 11.1 shows the frequencies of seven basic notes.
Following is an example code to play middle C note (261.63 Hz) on a speaker.

R S S I R S S

// Example 11.5
#include "mbed.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
PwmOut speaker (D6) ;

#elif defined(TARGET LPC1768) //LPC1768 + Application board
PwmOut speaker (p26) ;

#endif

int main ()

{

float £=261.63; //frequency of middle C
float T=1.0/f; //Period
speaker.period(T) ;

speaker =0.5;

wait (0.02) ;

}

R S S I R S S

Exercise 11.4

Use the information in Table 11.1 to modify the above program so that it plays other
music notes.

Exercise 11.5

Write a program that plays the song “Twinkle Twinkle, Little Star”

Arm®Mbed™ Ethernet loT Starter Kit

11.5 Three-Axis Accelerometer

An accelerometer is an electromechanical device that will measure acceleration forces.
The mbed application shield’s onboard three-axis accelerometer, which uses 12C for
communications, is connected by pins D14 and D15 (SDA, SCL) to the FRDM-K64F
board. Following is an example to get the acceleration information from the X, Y, and Z
axes. In this program, you will need to import the MMA7660 accelerometer library
(https://developer.mbed.org/users/Sissors/code/ MMA7660/).

khkkhkdkhkhhkhkhhkhkhhkhkdrkhkdhkhhbhrhhhkdhbhkdrkhkdhkhdbrrdhkdhkrkdrrdrrdbrrkdrhhxdxx

// Example 11.6

#include "mbed.h"
#include "C12832.h"
#include "MMA7660.h"

#if defined (TARGET K64F) //FRDM-K64F IoT Starter Kit
C128321cd (D11, D13, D12,D7,D10) ;
MMA7660 MMA (D14,D15) ; // I2C (SDA,SCL)

#elif defined (TARGET LPC1768) //LPC1768 + Application board
C12832 lcd(p5, p7, p6, P8, pll);
MMA7660 MMA (p28,p27) ; // I2C (SDA,SCL)

#endif

intmain ()

{
led.cls () ;
while (1) {
lcd.locate (0, 3) ;
lcd.printf ("x=%.2fy=%.2f2z=%.2f" ,MMA.x () ,MMA.y () ,MMA.z()) ;
wait (0.1) ;
}
}

Rk b S S O I O S R S S S

Exercise 11.6

Modify the above program so that if X-axis values are larger than a certain value, it
switches on red RGB LED; if Y-axis values are larger than a certain value, it switches on
green RGB LED; and if Z-axis values are larger than a certain value, it switches on blue
RGB LED.

11.6 LM75B Temperature Sensor

The mbed application shield’s onboard LM75B temperature sensor, which also uses 12C
for communications, is connected by pins D14 and D15 (SDA, SCL) to the FRDM-K64F

211

https://developer.mbed.org/users/Sissors/code/MMA7660/

212

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

board. Following is an example for the onboard LM75B temperature sensor. In this
program, you will need to import the LM75B library (https://developer.mbed.org/
users/chris/code/LM75B/).

R IRk ko ki ki R ki ki

// Example 11.7

#include "mbed.h"
#include "LM75B.h"
#include "C12832.h"

#if defined (TARGET K64F) //FRDM-K64F IoT Starter Kit
C128321cd (D11, D13, D12, D7, D10) ;
LM75B sensor (D14,D15) ; // I2C (SDA,SCL)

#elif defined (TARGET LPC1768) //LPC1768 + Application board
C12832 lcd(p5, p7, p6, p8, pll);
LM75B sensor (p28,p27) ; // I2C (SDA,SCL)
#endif

int main ()

{

while (1) {
lcd.cls () ;
lcd.locate (0, 3);
led.printf ("Temp = %.1f\n", sensor.read());
wait (1.0);
}
}

R E IR Rk ki ki Rk ki

Exercise 11.7

Modify the above program so that you can change the temperature display either in
Celsius or Fahrenheit by pressing the joystick.

11.7 RGBLED

The mbed application shield’s RGB LED is connected by pins D5, D8, and D9 to the
FRDM-K64F board.

Following is an example program for the onboard RGB LED. It uses PWM to gradu-
ally light up RGB LED one by one. For RGB LED, value 1 means off, and 0 means fully on.

https://developer.mbed.org/users/chris/code/LM75B/
https://developer.mbed.org/users/chris/code/LM75B/

Arm®Mbed™ Ethernet loT Starter Kit

R b S S S O R S S

// Example 11.8
#include "mbed.h"

#if defined (TARGET K64F) //FRDM-K64F IoT Starter Kit
PwmOut r (D5) ;
PwmOut g (D8) ;
PwmOut b (D9) ;

#elif defined (TARGET LPC1768) //LPC1768 + Application board
PwmOut r (p23);
PwmOut g (p24) ;
PwmOut b (p25) ;

#endif

int main()
{
r.period (0.001) ;
while (1)
for(float i = 0.0; 1 < 1.0 ; 1 += 0.01) {
r =1.0 - 1;
g=1;
b=1;
wait (0.01);
}
for(float i = 0.0; 1 < 1.0 ; 1 += 0.01) {
r=1;
g=1.0 - 1i;
b=1;
wait (0.01);

}

for(float i = 0.0; 1 < 1.0 ; 1 += 0.01) {

}

R bk S S S S R S S R

Exercise 11.8

Modify the above program so that it displays red and blue colors at different intensities,
depending on the inputs of two potentiometers.

213

214

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed
Further Information about Ethernet loT Starter Kit:

https://os.mbed.com/platforms/IBMethernetKit/
https://os.mbed.com/components/mbed-Application-Shield/

11.8 Summary

This chapter provides example codes for the Arm® Mbed" Ethernet IoT Starter Kit,
illustrating the usages of 128x32 LCD, joystick, RGB LED, two potentiometers, speaker,
three-axis accelerometer, and LM75 temperature sensor.

https://os.mbed.com/platforms/IBMethernetKit/
https://os.mbed.com/components/mbed-Application-Shield/

12

loT Projects with Arm® Mbed "

Reach for the stars.
- Christa McAuliffe

12.1 Temperature Monitoring over the Internet

Temperature measurement is one of the most fundamental, most commonly performed
measurements. It can be temperature of a room, temperature of a person, or tempera-
ture of a device. Being able to monitor the temperature remotely, over the Internet, has
many potential important applications. For example, many old people live alone. If they
fall ill, it might be some time before it is discovered that they are in crisis. If we can
remotely monitor their body temperature, then when they are sick, especially with a
life-threatening illness, we can alert the doctors, healthcare providers, and relatives
instantaneously. In this project, you will use the LM75B temperature sensor on the
application shield as the temperature sensor, and Ethernet as the means to connect to
the Internet. Figure 12.1 shows the schematic diagram of the project.

Hardware Required
o Arm® Mbed" Ethernet IoT Starter Kit (FRDM-K64F + mbed application shield)
e Mini USB cable and Ethernet cable

Software Required
e An Internet browser

Procedure

Connect the Arm® Mbed "™ Ethernet IoT Starter Kit to a computer using a mini USB
cable, and connect it to the Internet using an Ethernet cable. There are many ways to
monitor temperature over the Internet. The simplest way is to turn FRDM-K64F into a
web server. The following example illustrates how to set up a web server, read the tem-
perature sensor data, and print it on the LCD as well as on the web page. You need to
import four libraries to run this code:

o “LM?75B” library—for temperature sensor
https://developer.mbed.org/users/chris/code/LM75B/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

215

https://developer.mbed.org/users/chris/code/LM75B/

216 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

Mobile devices

‘
v,

Internet >

\ Computers

Embedded devices

Figure 12.1 The schematic diagram of the temperature monitoring project over the Internet.

e “C12832” library—for LCD
https://developer.mbed.org/users/chris/code/C12832/

o “Ethernetinterface” library—for Ethernet connection
https://os.mbed.com/users/mbed_official/code/EthernetInterface/

e “mbed-rtos” library—for EthernetInterface and multithreading
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

R S S S R S

// Example 12.1

#include "mbed.h"

#include "EthernetInterface.h"
#include "rtos.h"

#include <stdio.hs>

#include <string.hs>

#include "LM75B.h"

#include "C12832.h"

#define PORT 80

bool serverIsListened = false;
TCPSocketConnection client;
bool clientIsConnected = false;

int mode=0;

C12832 lecd(D11, D13, D12, D7, D10);
LM75B sensor (D14,D15) ;

https://developer.mbed.org/users/chris/code/C12832/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

IoT Projects with Arm® Mbed ™

EthernetInterface eth;
TCPSocketServer server;
float temp=0;

void web thread(void const *args) {
if (server.bind (PORT)< 0)
serverIsListened = false;
} else {
serverIslListened = true;

server.listen() ;

//listening for http GET request
while (serverIsListened) ({
if (server.accept (client)<0) {
printf ("failed to accept connection.\n\r");
} else {
printf ("connection success!\n\rIP: %s\n\r",client.get address()) ;
clientIsConnected = true;

while (clientIsConnected)
char buffer[1024] = {};
if (client.receive (buffer, 1023)<1){
break;
}
else{
printf ("Received
Data: %$d\n\r\n\r%.*s\n\r",strlen (buffer),strlen(buffer),h buffer);
if (buffer[0] == 'G' && buffer[l] == 'E' && buffer([2]
== 'T' && buffer[3] == ' ' && buffer[4] == '/') {
printf ("GET request incoming.\n\r");
//set up http response header & data
char Body[1024] = {};
sprintf (Body, "Temp = %$f \n\r\n\r", temp) ;
char Header[256] = {};
sprintf (Header, "HTTP/1.1 200 OK\n\rContent-Length:
$d\n\rContent-Type: text\n\rConnection: Close\n\r\n\r", strlen (Body)) ;
client.send (Header, strlen (Header)) ;
client.send (Body, strlen (Body)) ;
clientIsConnected = false;

}

printf ("close connection.\n\r tcp server is listening...\n\r");
client.close() ;

217

218

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

}
}
int main (void)
{
eth.init(); //Use DHCP
eth.connect () ;
printf ("\r\nServer IP Address is %s\r\n",
Thread thread(web_thread) ;
while (1) {
lcd.cls () ;
lcd.locate(0,3) ;
temp=sensor.read() ;
led.printf ("Temp = %.1f\n", temp);
printf ("Temp = %.1f\n\r", temp);
wait (1.0) ;
}
}

eth.getIPAddress()) ;

R R R Rk R kS kS Rk ki

In this case, you can write a simple Java TCP client to send commands to the starter
kit; see the following example code and make sure you use the correct server IP address
“x.x.x.x". Change the mode value to 0, 1, and 2, to switch the light off, on, and to auto-
matic mode. You can compile and execute the code using an online Java compiler, such

as this one (Figure 12.2):

http://www.tutorialspoint.com/compile_java_online.php

L]

Figure 12.2 Online Java compiler.

FEer——

http://www.tutorialspoint.com/compile_java_online.php

IoT Projects with Arm® Mbed ™

R b S S S O R S S

// Example 12.2

import java.io.*;
import java.net.¥*;

public class TCPClient

{

public static void main(String[] args)

{

Socket echoSocket; //Declares a Socket
PrintWriter out; //Declares a PrintWriter object.
BufferedReader in;

try

{

echoSocket = new Socket ("x.x.x.x", 9999);

out = new PrintWriter (echoSocket.getOutputStream() ,true) ;

in = new BufferedReader (new
InputStreamReader (echoSocket .getInputStream())) ;

String mode = "0O"; //0: off 1: on 2: auto
out.println (mode) ;

out.close () ;
in.close () ;
echoSocket.close() ;

}

catch (Exception e)

{
System.out.println("Error: "+e.toString()) ;
System.exit (-1) ;

}

}//end main

}

R bk S S S S R S S R

Alternatively, you can also set up your Arm® Mbed™ Ethernet IoT Starter Kit as a
HTTP client, and use the POST method to update the temperature values to a remote
web server. Following is a simple example to post some data to a web server (http://
httpbin.org/post). In this code, you will need to import “HTTPClient” library:

https://os.mbed.com/users/donatien/code/HTTPClient/

219

http://httpbin.org/post
http://httpbin.org/post
https://os.mbed.com/users/donatien/code/HTTPClient/

220

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

R S S S R

// Example 12.3

#include "mbed.h"
#include "EthernetInterface.h"
#include "HTTPClient.h"

EthernetInterface eth;
HTTPClient http;
char str[512];

int main()

{
eth.init () ;
eth.connect () ;

HTTPMap map;

HTTPText inText (str, 512);

map.put ("Hello", "World");

map.put ("test", "1234");

printf ("\nTrying to post data...\n\r");

ret = http.post ("http://httpbin.org/post", map, &inText) ;

if (lret)

{

printf ("Executed POST successfully - read %d characters\n",
strlen(str)) ;

printf ("Result: %s\n\r", str);

}

else

{

printf ("Exrror - ret = %d -
HTTP return code = %d\n\r", ret, http.getHTTPResponseCode ()) ;

}

eth.disconnect () ;
while (1) { }

}

R S I S R S S

Exercise 12.1

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading to a web server using the POST method.

You can also send the temperature values to an email address. Following is a simple
email example. Make sure you use the correct server, port, username, password, sender

http://httpbin.org/post

IoT Projects with Arm® Mbed™ | 221

address, and receiver address when you are running it. In this example, you will need to
import the “SimpleSMTPClient” library.

https://os.mbed.com/users/sunifu/code/SimpleSMTPClient/

R S S S S R S

// Example 12.4

#include "mbed.h"
#include "EthernetInterface.h"
#include "SimpleSMTPClient.h"

#define DOMAIN "gmail.com"

#define SERVER "smtp.gmail.com"

#define PORT "587" //25 or 587,465 (OutBound Port25 Blocking)
#define USER "xxxx"

#define PWD "xxxx"

#define FROM ADDRESS "XXXX@XXXX"

#define TO ADDRESS "xxx@xxx"

#define SUBJECT "Test Mail"

int main ()
EthernetInterface eth;
eth.init () ;
eth.connect () ;

SimpleSMTPClient smtp;
int ret;
char msg[]="Hello World";

smtp.setFromAddress (FROM ADDRESS) ;
smtp.setToAddress (TO_ADDRESS) ;
smtp.setMessage (SUBJECT, msg) ;

ret = smtp.sendmail (SERVER, USER, PWD, DOMAIN, PORT,SMTP_ AUTH NONE) ;

if (ret) {

printf ("Email Sending Error\r\n") ;
} else {

printf ("Email Sending OK\r\n") ;

return O;

}

R S S S S R S

https://os.mbed.com/users/sunifu/code/SimpleSMTPClient/

222

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Exercise 12.2

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading out by email.

A much more elegant way is to use MQTT (Message Queuing Telemetry Transport)
protocol. Following is an example program that connects toa MQTT broker (iot.eclipse.
org) at port 1883, creates a topic called “PX-Sensor,” and publishes the data (Hello
World) four times.

Rk b Ik S R R kR R R o R R R Rk

// Example 12.5

#define MQTTCLIENT QOS2 1
#include "MQTTEthernet.h"
#include "MQTTClient.h"

int arrivedcount = 0;

void messageArrived (MQTT: :MessageData& md)

MQTT: :Message &message = md.message;
++arrivedcount;

int main(int argc, char* argvl[])

{

MQTTEthernet ipstack = MQTTEthernet () ;
char* topic = "PX-Sensor';

MQTT: :Client<MQTTEthernet, Countdown> client =
MQTT: :Client<MQTTEthernet, Countdowns> (ipstack) ;

char* hostname = "iot.eclipse.org";
int port = 1883;

int rc = ipstack.connect (hostname, port);

MQTTPacket connectData data = MQTTPacket connectData initializer;
data.MQTTVersion = 3;

data.clientID.cstring = "PX-Sensor";
data.username.cstring = "testuser";
data.password.cstring = "testpassword";
if ((rc = client.connect (data)) != 0)

printf ("From MQTT connect: %d\n\r", rc);

IoT Projects with Arm® Mbed ™

if ((rc = client.subscribe (topic, MQTT::Q0S2, messageArrived)) != 0)
printf ("From MQTT subscribe: %d\n\r", rc);

MQTT: :Message message;

for (int i=0;i<5;i++)
// QoS 0
char buf[100];
sprintf (buf, "%d! QoS 0 message \n", 1i);
message.qgos = MQTT::Q0S0;
message.retained = false;
message.dup = false;
message.payload = (void*)buf;
message.payloadlen = strlen (buf)+1;
rc = client.publish(topic, message) ;
while (arrivedcount < 1)

client.yield(100) ;

wait (2) ;

client.unsubscribe (topic) ;
client.disconnect () ;
ipstack.disconnect () ;

return 0;

}

dkhkkhkkhkkhkkhkkhhkhkhhkhhhkdhhkdhhdrhddhdhhdhhdhhdrhdrhdrhrdrhrdrhrdrhrdrhkdx*x

Exercise 12.3

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading out at MQTT messages.

You can view the standard MQTT clients, such as IBM’s WMQTT IA92 Java utility:
https://github.com/mqtt/mqtt.github.io/wiki/ia92

Just download the software and follow the instructions to install and run it. If you
have not installed Java before, you do need to install Java first before you can run the
program. Figure 12.3 shows the screenshot of the program and the messages it receives.

Further Information about Java:

https://www.java.com/en/
https://www.java.com/en/download/help/index_installing.xml
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html

223

https://github.com/mqtt/mqtt.github.io/wiki/ia92
https://www.java.com/en/
https://www.java.com/en/download/help/index_installing.xml
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html

224 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

L= WMQTT Uity =5 EcH ==

WMQTT | Options

Broker TCP/IP address: |iot.eclipse.org - | [1883 -

@ Connect [Disconnect] [History

Subscribe To Topics - text display
Subscribe Topic:|PX-Sensor » Reguest QOS::U v:
Received Topic: PX-Sensor Qos: 0 Retained:

4! Qo5 0 message

Hex
AW
Publish Messages - text display
Topic:|PX-5ensor - QoS::D - Retained: |:|

Publish

File...

Hex

Figure 12.3 The WMQTT IA92 Java utility.

12.2 Smart Lighting

Lighting and heating are the two most significant parts of utility bill. Smart lighting can
help to reduce costs. In this project, we use a LED to represent the light of a room, a PIR
(passive infrared) sensor to detect if a person is present in the room, a LDR (light-
dependent resister) to detect the ambient light, i.e., whether it is daylight, or night.
Figure 12.4 shows the schematic circuit diagram of the project.

Hardware Required

e Arm® Mbed" FRDM-K64F development board
LED

LDR + 10kQ resister

PIR sensor (HiLetgo HC-SR501)

Mini USB cable and Ethernet cable

Software Required
e An Internet browser
o Java compiler

IoT Projects with Arm® Mbed ™

PIR

D3 J/LED output

D2 // PIR senor input
AD //LDR sensor input
vce | GND
out
LED
LDR
10kQ
—
+

Figure 12.4 The schematic circuit diagram of the smart lighting project.

Procedure
Following are the schematic diagram of the circuit and corresponding software code.
You will need to import the following libraries.

o “Ethernetinterface” library—for Ethernet connection
https://os.mbed.com/users/mbed_official/code/EthernetInterface/

o “mbed-rtos” library—for EthernetInterface and multithreading
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

The program runs in two separate threads, one for receiving commands from the
Internet using TCP Socket and one for controlling the light. There are three modes:

e Mode 0: default off mode. In this mode, the light is always off.

e Mode 1: on mode. In this mode, the light is always on.

e Mode 2: automatic mode. In this mode, if there is someone present in the room and
ambient light is dark, switch the light on; otherwise, keep the light off.

225

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

226 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

R S S S R

// Example 12.6

#include "mbed.h"

#include "EthernetInterface.h"
#include "rtos.h"

#define SERVER PORT 9999

EthernetInterface eth;

DigitalOut light (D3); //LED output
DigitalIn pir(D2); // PIR senor input
AnalogIn 1dr (AO) ; //LDR sensor input

int val=0;
int mode = 0; //0: off; 1: on; 2: auto

void socket thread(void const *args) {

TCPSocketServer server;
server.bind (SERVER_PORT) ;
server.listen() ;

while (true)
TCPSocketConnection client;
server.accept (client) ;
client.set _blocking(false, 1500); // Timeout after (1.5)s
printf ("Connection from: %s\n", client.get address()) ;
char buffer[256];
while (true)
int n = client.receive (buffer, sizeof (buffer)) ;
if (n <= 0) break;

// print received message to terminal

buffer([n] = '\0';
printf ("Received message from Client :'$%s'\n",buffer);
if (strcmp (buffer, "off")==0)
{
mode=0;
}
else if (strcmp (buffer, "on")==0)
{
mode=1;
}
else if (strcmp (buffer, "auto")==0)
{
mode=2;

} //0: auto; 1: on; 3: off

IoT Projects with Arm® Mbed ™

}

client.close();

}

void light thread(void const *args) {
while (true) {

if (mode ==0) //default off mode
{
light=0;
}
else if (mode ==1) // on mode
{
light=1;
}
else // automatic mode

{

val = pir.read();

if (val==0) {
if (ldr.read()>0.7) //LDR 1k ohm: full light
{ // 40k omh: dark
light=1;
}
}
else{
light=0;

}

Thread: :wait (500) ;

}

int main ()
{
eth.init () ;
eth.connect () ;
printf (" IP address: %s \r\n",eth.getIPAddress()) ;

Thread thread(socket thread, NULL, osPriorityNormal,
DEFAULT STACK SIZE) ;

Thread thread 2(light thread, NULL, osPriorityNormal,
DEFAULT STACK SIZE) ;

while (1) {}

}

dkhkkkhkkhkhkhkkhkhkhkhhkhhhkdhhkdhhdrhdrhdhhdhhdhddhdrhrddhrdrhrdrhrdrhrdrhkdx*x

Exercise 12.4

Modify the above example so that it uses UDP server to receive the messages.

227

228 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

4| SmartLight - O

On Off Auto

Figure 12.5 The Java Socket client program

Following is a Java Socket client example that can send “on,” “off,” and “auto” com-
mand to the Arm® Mbed™ development board. Figure 12.5 shows its graphical user
interface.

Rk S R kR kR R R R

// Example 12.7

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*; //Imports java input-output libraries (for
StreamReaders)

import java.net.*; //Imports java network libraries (for sockets)

public class SmartLight {

static String SERVER="192.168.137.1";
static int PORT = 9999;
/**
* Create the GUI and show it.
*/
private static void createAndShowGUI () {
//Create and set up the window.
JFrame frame = new JFrame ("SmartLight") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;

JButton openButton = new JButton("On") ;

JButton closeButton = new JButton ("Off");

JButton autoButton = new JButton ("Auto") ;
frame.getContentPane () .setLayout (new FlowLayout ()) ;

frame.getContentPane () .add (openButton) ;

frame.getContentPane () .add (closeButton) ;

frame.getContentPane () .add (autoButton) ;

openButton.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {
sendcmd (SERVER, PORT, "on") ;

IoT Projects with Arm® Mbed"™ | 229

1)
closeButton.addActionListener (new ActionListener ()
public void actionPerformed (ActionEvent e) {
sendcmd (SERVER, PORT, "off") ;

1)
autoButton.addActionListener (new ActionListener() ({
public void actionPerformed (ActionEvent e) {
sendcmd (SERVER, PORT, "auto") ;

I3F;
//Display the window.
frame.pack() ;
frame.setVisible (true) ;

private static void sendcmd (String server, int port,String cmd)

{

Socket echoSocket; //Declares a socket
PrintWriter out; //Declares a PrintWriter object to write

to the socket
BufferedReader in; //Declares a Buffered reader to read

from the socket
try

{

//Instantiates a new socket with the server IP address

and port number
echoSocket = new Socket (server, port);

//Creates a new output stream in order to write to the socket
out = new PrintWriter (echoSocket.getOutputStream(), true) ;

//Input from the socket with a bufferedreader
in = new BufferedReader (new InputStreamReader (
echoSocket .getInputStream())) ;

//Writes the user input into the socket for transmission

out.println(cmd) ;

//Writes the received "echo" line to the screen
JOptionPane.showMessageDialog(null, in.readLine(),
JOptionPane.INFORMATION_MESSAGE);

nn
’

//Close all the input and output streams
out.close() ;
in.close () ;

™

230 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

echoSocket.close () ;

}

catch (Exception e)
{
System.out.println ("Error: "+e.toString());
System.exit (-1) ;
}
}//end sendcmd
public static void main(Stringl[] args)
//creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater (new Runnable () {
public void run() {
createAndShowGUI () ;

13N,
}

khkkhkkhkkhkhkhkkhhkhkhkhkhhhkdhkhkdhhkdhhdhhdhddhddhddhdhhdrhdrkhrdrhrdrdrdrddx*x

Further Information about Java Sockets:

http://docs.oracle.com/javase/tutorial/networking/sockets/
https://www.tutorialspoint.com/java/java_networking.htm

12.3 Voice-Controlled Door Access

Modern mobile phones come with many useful features and functions that can enrich
your IoT projects. In this project, we will use the speech recognition feature of Android
phones, to make a voice controller door access. We will develop the phone app using
MIT App Inventor 2 (AI2), which is an excellent web-based, graphical programming
tool, developed by the Massachusetts Institute of Technology in the United States. The
phone app will use speech recognition to take commands. In this case, when the phrase
“open sesame” is detected, it will send a command to FRDM-K64F development board
to open the door through a servo motor. Figure 12.6 shows a schematic circuit diagram
of the project.

Hardware Required

o Arm® Mbed" Ethernet IoT Starter Kit (FRDM-K64F + mbed application shield)
e A servo motor

e An Android phone

e Mini USB cable and Ethernet cable

Software Required
e An Internet browser
e MIT AI2 online compiler

http://docs.oracle.com/javase/tutorial/networking/sockets/
https://www.tutorialspoint.com/java/java_networking.htm

IoT Projects with Arm® Mbed ™

Figure 12.6 The schematic circuit diagram of the voice-controlled door access project.

Servo motors (or servos, RC servos etc.) are small, cheap, mass-produced motors
typically having a drive wheel that is controlled by a PWM coded signal. A typical radio
control (RC) servo is shown in Figure 12.6. The wheel moves around 0 to 180 degrees.
Servo motors are ideal for hobbyist and student robotics applications. You can easily get
servo motors from Amazon, Sparkfun, eBay, Cool Components, etc. Hitec and Futaba
are the leading servo manufacturers.

Procedure
To use MIT AI2, just log in to the MIT AI2 website:

http://ai2.appinventor.mit.edu

Then follow the instructions to register and log in. You can also use your Google
account to log in. After logging in, you can create a new project by clicking “Projects ->
Start new project”. You need to give a name to your project—in this example, we called
it “IoTProject” (Figure 12.7). The “Viewer” window in the middle shows the front end of
your phone app, i.e., how it looks when running.

From the left side “Pallette;,” under the section of “User Interface,” drag a “Button,” a
“Textbox,” a “Label” into the screen. This will be the graphic interface of your phone
app. Then, from the section of “Media,” drag a “SpeechRecognizer” component into the
screen. Please note, this is an invisible component of your phone app. From the section
of “Connectivity,” drag a “Web” component into the screen. This is also an invisible
component.

Next click the “Blocks” button on the top right corner, this will bring the backend of
your phone app (Figure 12.8). You can switch between the frontend view and backend
view of your phone app by clicking the “Designer” button and “Blocks” button.

From the backend view, create your program using blocks as illustrated in Figure 12.8.
To compile your program, select “Build -> App (provide QR code for .apk)” as shown in
Figure 12.9. After successful compilation, a 2D QR code will pop up, as shown in
Figure 12.10. Use your mobile phone to scan the QR code to install the phone app.

231

http://ai2.appinventor.mit.edu

232 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

R MIT App Irvemacr =

€ & C | @ azappeventormiLedu Tocie sens TeTisIS
ﬂ”"@lm;ﬂza Projecis = Connect + fasld v belp v MyProets Oalery fuide Repo an e
IoTProject [sceet - J sstserenJ remare e
Palette Viewer Compenents
User Interface Iisglay hidden companents in Viewes & Tlacreem
i ek 10 300 Priview on Tabiet 5ize oo
L teapen
Al Laann
e comeorder Sk [T
L]
% SpeschRecognizert
@ camers bisp 136,148 96 15/qmcpen+sesame =
B imagericeer Toxt foe Labal!
B Player
@4 sound
® SoundRecorser
B speschRscognizer
W TenTosprech
£ VideoPayer
Y vandexmanslate
Drawing and Animation
Swmvors Rename Deiete
o o o |
Media
Storage e
MHon-visible companents
= Upload Fi
Connectivity ® a ™
LEGD® MINDSTORMSS Mkl Speschfscapriec)
Experimental

oy sabeBomad com *

Frghah +

Sereenl

ABQUESCHeT

Alignitiorizortal
Lest:1 +

Algrivertcal
Top:1 -

Appama
wrPoma

BackgroundColor
0 whie
Bacagroundimage
Hore.
CloseScreendnimation
Defaist +

lesn

Wore.
OpenSermsnanimation
Defaslt +
Sereenirieniation
Unspecibad «
Serollatie

BhowLIsIASISEn

ShowStatusliar -

Figure 12.7 The MIT AI2 project development web page, Designer view (frontend).

/8 M agpiensor % W\

EEErE]

L C | D ai2appewentormitedu,Tocale =2n#6E04146776735744

MIT App Inventor 2
= Beta

oo O

Projects - Connect - Build - Help + My Projects Oallery Ousde Report an |ssue

Viewer

English -

Q| -

perry.siso@gmail com -

8 Built-in
|-
B
.M-llu
.'HI
.IJ)‘!
.tahrs
B variabies
.F‘mwdures

8 D screent

& Ainont

Ll reanon

when [EXCCULES Initialize

Al Labent

[T

£ speechnecognizen
@ any component

ferame Delete

Upload File .

Figure 12.8 The MIT AI2 project development web page, Blocks view (backend).

[oT Projects with Arm® Mbed"™ | 233

E=l®l & 7
/| TR T agp bvesner =
« o a2 " Tocaless AL46T76735744 Ah|E -~ & 1
HM”WMMK:L' Projects - Connect- Build- Help- MyPrjects Gallery GQude FReportanlssse Gnglish- penysisc@gmailleom -
p=y a

| Apa { provide 0R coda for apk) [
-) T | - =]
loTProject scemnt - | rassaen. | Apa (save apk to my computer)

Blocks Viewer

8 uitin
B convol
Buogic
Bn
."Wl
B
.W’
.I’.Iﬁhs
W rrocedues
© Dsereem
Hpuriem
I extbon
Al Labent
.ml
& speechmecognizert
@ Any component

whan (GRS GolText

do

Bename Delete

Lo A0 &0 a
Uplosd i

Figure 12.9 The MIT Al2 project compilation.

E BT
/| TR T agp bvesner *

< C @ 4 Tocalews 4146776735744 LR

HMWMIHMI%I’E Projects - Conmect= Buid- Help- MyProjects Gallry Gude Reportanlssse English - permyrisc@gmail cem -
leTProject mllmmlmm mm

Blocks Viewer

8 uitin
B convol
Buogic
Bn
."Wl
B
.W’
.I’.m!
W pooceues
© Dsereem
Hpuriem
I extbon
Al Labent
.ml
& speechmecognizert
@ Any component

Mote: this barcade is anly valid for 2
houss. See the FAQ for il on how 1o
share your app with others.

Bename Delete

Lo A0 &0 a
Uplosd i

Figure 12.10 The QR code of MIT Al2 project.

234

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

¥ COML3 - Tera Term VT == | =]

File Edit 5Setup Control Window Help

Haiting for connect ion...

Figure 12.11 The Tera Term output of the program.

In this example, when the button is clicked, a “SpeechRecognizer” is activated, which
will listen to what you speak and convert it to text, shown in the label. If what you said
is a secret phrase, e.g., “open sesame’, it will send a web request “http://x.x.x.x/
g=open+sesame” to you FRDM-K64F development board, where “x.x.x.x” should be
the IP address of your board.

Following is the corresponding code for the mbed board. It runs a “web_server()”
function to listen for HT'TP request messages at port 80. When a request is received, it
looks for the key phrase “g=open+sesame” in the request message. If found, it then
replies “Door Open”; otherwise, it replies “Door Not Open’” Figure 12.11 shows the
corresponding terminal outputs.

In this example, you will need to import Servo library:

https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//
classServo.html

Rk b Ik S R R kR R R o R R R Rk

// Example 12.8

#include "mbed.h"

#include "EthernetInterface.h"
#include <stdio.h>

#include <strings>

#include "rtos.h"

#include "Servo.h"

#if defined(TARGET_K64F)
Servo myservo (D9) ;

https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//classServo.html
https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//classServo.html

IoT Projects with Arm® Mbed™ | 235

#elif defined (TARGET_LPC1768)
Servo myservo (p21) ;
#endif

#define PORT 80

void web_server (void const *args)
TCPSocketServer server;
TCPSocketConnection client;

server.bind (PORT) ;
server.listen() ;

while (true) {
printf ("Waiting for connection...\r\n");
int32 t status = server.accept(client) ;
printf ("Connection from: %s\r\n", client.get address()) ;

if (status>=0)
{
char buffer[1024] = {};
int n= client.receive (buffer, 1023);
printf ("Received Data:
$d\n\r\n\r%.*s\n\r",strlen(buffer),strlen (buffer),h buffer) ;

//GET /g=open+sesame HTTP/1.1

char item[13];

for (int k=0; k<13; k++){
item[k] = buffer[k+5];

char Body[1024] = {};

if (strcmp(item,"q:open+sesame")::0){
sprintf (Body, "<html><title></title><body><hl>Door
Open</hl></body></html>\n\r\n\r") ;
//move the servo to open the door,

myservo = 1;
// wait for 5 seconds, close the door
wait (5) ;
//close the door
myservo = 0;
}
elsef

sprintf (Body, "<html><title></title><body><hl>Door Not
Open</hl></body></html>\n\r\n\r") ;

™

236 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

//do nothing with the door

char Header[256] = {};
sprintf (Header, "HTTP/1.1 200 OK\n\rContent-Length: %d\n\rContent-
Type: text/html\n\rConnection: Keep-Alive\n\r\n\r",strlen (Body)) ;
client.send (Header, strlen (Header)) ;
client.send (Body, strlen (Body)) ;

client.close();

}
int main() {
EthernetInterface eth;
eth.init () ;
eth.connect () ;
printf ("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

//close the door
myservo = 0;

//wait for instructions
web server ("");
while (1) {}

}

khkkkhkkhkhkhkkhhkhkhkhkhhhkdhkhkdhhkdhhdhhdhddhddhdrhdrhrdrhrdrkhrdrhrdrdrdrdhxix

You can also test your program using a web browser; just type in “http://x.x.x.x/
g=open+sesame” as the URL to connect to your FRDM-K64F development board,
where “x.x.x.x” should be the IP address of your board. You should get the same results.

Exercise 12.5

Modify the above example so that it also checks the client’s IP address, and only
messages from allowed client addresses can be accepted.
Further Information about MIT App Inventor 2:

http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/ai2/tutorials.html

Further Information about mbed Servo Motor:

https://os.mbed.com/users/4180_1/notebook/an-introduction-to-servos/
https://os.mbed.com/cookbook/Servo
https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07/classServo.html

http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/ai2/tutorials.html
https://os.mbed.com/users/4180_1/notebook/an-introduction-to-servos/
https://os.mbed.com/cookbook/Servo
https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07/classServo.html

M

[oT Projects with Arm® Mbed"

12.4 RFID Reader

RFID is promising technology that has been increasingly used for tracking and identifi-
cation. In this project, we will illustrate how to use FRDM-K64F development board
and SunFounder 13.56 MHz RC522 RFID reader and tags kit (Figure 12.12) to make an
RFID reader.

Hardware Required

o Arm® Mbed" FRDM-K64F development board
e RC522 RFID reader and tags

e Mini USB cable and Ethernet cable

Software Required
e An Internet browser

Figure 12.13 shows the wiring of FRDM-K64F development board and RFID-RC522
reader.

Procedure

Following is an example code for the RFID reader. It first initializes the RFID reader

using the “RFID.PCD_Init()” function, then uses the “RFID.PICC_IsNewCardPresent()”

function to checkifa new RFID tag is present. It uses the “RFID.PICC_ReadCardSerial()”

to read the information out of the tag, and finally, prints out the details (Figure 12.14).
In this program, you will need the RFID MFRC522 Library:

https://os.mbed.com/users/AtomX/code/ MFRC522/

Figure 12.12 The SunFounder 13.56 MHz RFID-RC522 reader and RFID tags kit.

237

https://os.mbed.com/users/AtomX/code/MFRC522/

™

238 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

NSS

SCK

MOslI

MISO
RST

D8

MFRC522 Mbed

vicC -> 3v3

RST -> D8

GND -> GND

MISO -> SPI_MISO=D12
MOSsI -> SPI_MOSI=D11
SCK -> SPI_SCK= D13
NSS -> SPICS = D10
IRQL -> Notused.

Figure 12.13 The wiring of FRDM-K64F development board and RFID-RC522 reader.

COM3 - Tera Term VT — O *

File Edit Setup Control Window Help

Figure 12.14 The output of RFID-RC522 reader.

IoT Projects with Arm® Mbed"™ | 239

R b S S S O R S S

// Example 12.9

#include "mbed.h"

#include "MFRC522.h"

//MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCK,
MFRC522 RFID (D11, D12, D13, D10, D8);

int main(void) {
printf ("Touch a RFID card...\r\n");

// Init. RC522 Chip
RFID.PCD Init();
while (true) {
// Look for new cards
if (! RFID.PICC IsNewCardPresent ())
{

wait_ms (500) ;

continue;

// Select one of the cards
if (! RFID.PICC ReadCardSerial())
{

wait_ms (500) ;

continue;

// Print Card UID
printf ("Card UID:
for (uint8 t i = 0;

{
}

printf ("\n\r") ;
// Print Card type
uint8 t piccType =

")
i < RFID.uid.size; i++)

printf (" %d", RFID.uid.uidBytel[il]) ;

SPI_CS, MF_RESET) ;

RFID.PICC GetType (RFID.uid.sak);

printf ("PICC Type: %s \n\r", RFID.PICC GetTypeName (piccType)) ;

wait_ms (500) ;

}

R b S S S O R S S

240

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

0 COM3 - Tera Term VT — O *
File Edit Setup Control Window Help

Figure 12.15 The output of RFID-RC522 reader.

With the RFID reader you can also create an access control, such as door access con-
trol, depending on the tags, and door access can be granted or refused. In the following
example, a list of tag IDs that can be granted for access is created in an array called “int
cards[][4]. If the tag’s ID matches one of the IDs in the list, it will display “Welcome!”
and “LedGreen” will light up; otherwise, it will display “Not Allowed!” and “LedRed” will
light up. Figure 12.15 shows the corresponding terminal output.

Rk b kR R R Rk kR R R O R e R R

// Example 12.10

#include "mbed.h"
#include "MFRC522.h" //https://developer.mbed.org/users/AtomX/code/
MFRC522/

DigitalOut LedRed(LED1) ;
DigitalOut LedGreen (LED2) ;

//MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCK, SPI_CS, MF_RESET);
MFRC522 RFID (D11, D12, D13, D10, D8);

int cards[] [4] = {
{241,131,29,43}, // card 1
{98,225,42,38} // card 2
}i

bool access = false;

http:////https://developer.mbed.org/users/AtomX/code/MFRC522/
http:////https://developer.mbed.org/users/AtomX/code/MFRC522/

M

10T Projects with Arm® Mbed™ | 241

int main(void) {
printf ("starting...\n") ;

// Init. RC522 Chip
RFID. PCD_Init () ;

while (true) {
LedRed = 1;
LedGreen = 1;

// Look for new cards

if (! RFID.PICC_IsNewCardPresent ())
wait ms(500) ;
continue;

// Select one of the cards
if (! RFID.PICC ReadCardSerial())
{

wait ms(500) ;

continue;

// Print Card UID
printf ("Card UID: ");
for (uint8 t i = 0; i < RFID.uid.size; i++)

{
}

printf ("\n\r") ;

// Print Card type

uint8 t piccType = RFID.PICC GetType (RFID.uid.sak) ;

printf ("PICC Type: %s \n\r", RFID.PICC GetTypeName (piccType)) ;

printf (" %d", RFID.uid.uidByte[i]) ;

for(int x = 0; x < sizeof (cards); x++){

for(int i = 0; i < sizeof (RFID.uid.size); i++){
if (RFID.uid.uidByte[i] != cards[x] [1]) {
access = false;
break;
} else {
access = true;

}

if (access) break;

242

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

1

if (access) {
printf ("Welcome!\n\r") ;
LedGreen = 0;

} else {
printf ("Not allowed!\n\r");
LedRed = 0;

}

wait ms (500) ;

}
}

khkkhkkhkkhkhkhkkhhkhkhkhkhhhkdhkhkdhhkdhhdhhdhddhddhddhdhhdrhdrkhrdrhrdrdrdrddx*x

Exercise 12.6

Modify the above example so that it only allows the access of a certain RFID card
between 9 a.m. and 5 p.m.

Further Information about RFID RC522:

https://os.mbed.com/users/kirchnet/code/RFID-RC522/
https://os.mbed.com/users/nivmukka/code/Personal-Alert-System-using-RFID-with-FR/
https://www.sunfounder.com/wiki/index.php?title=Mifare_RC522_Module_RFID_Reader

12.5 Cloud Example with IBM Watson Bluemix

IBM Watson IoT Platform is a powerful cloud-based platform that allows you rapidly
create analytics applications, visualization dashboards, and mobile IoT apps. With
Arm® Mbed" IBM Ethernet IoT Starter Kit, you can easily connect to IBM Watson [oT
platform.

Hardware Required
o Arm® Mbed" Ethernet IoT Start Kit (FRDM-K64F + mbed application shield)
e Mini USB cable and Ethernet cable

Software Required
e An Internet browser

Procedure

Just connect your IoT Starter Kit to your computer through USB, and to the Internet
through an Ethernet cable. From the following link (also see Figure 12.16), import the
“IBMIoTClientEthernetExample” program into your online compiler, compile it, and
load it up to your board. This program will send an accelerometer, temperature sensor,

https://os.mbed.com/users/kirchnet/code/RFID-RC522/
https://os.mbed.com/users/nivmukka/code/Personal-Alert-System-using-RFID-with-FR/
https://www.sunfounder.com/wiki/index.php?title=Mifare_RC522_Module_RFID_Reader

IoT Projects with Arm® Mbed ™

Next steps

Visit the |BM website for more details on the starter kit

Quick Start Program

QIEM tEthe tExample Import program

Contains example code to connect the mbed LPC1768 or FRDM-K&4F devices to the IBM Internet of Things
Cloud service via ethernet.

Last commit 23days ago by, IBM loT

Figure 12.16 The IBM loT Client Ethernet Example program page.

joystick, potentiometer 1 and 2 data to IBM Water IoT platform by MQTT. It also dis-
plays an information menu on the LCD. You can use a joystick to roll up and down the
menu to get information on device ID, MQTT status, Ethernet status, socket status, and
IP address, for example.

https://os.mbed.com/platforms/IBMEthernetKit/

12.5.1 IBM Quickstart Service

By default, the example program uses IBM Quickstart Service to send the data, you can
view the by going to the following website (also see Figure 12.17). No registration is
needed.

https://ibm.biz/iotgstart/

Just type in the correct device ID, and click the “Go” button. Your device ID is basi-
cally the MAC address, you can get your device ID from the LCD menu display by
rolling up or down the joystick. Now you should see all the sensor data, and the corre-
sponding chart display. You can select which sensor data to display in the chart, as
shown in Figure 12.18.

243

https://os.mbed.com/platforms/IBMEthernetKit/
https://ibm.biz/iotqstart/

244

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

IEM Watson loT Platform

#¥ Quickstart

i1

View lve
data from
yeur dovice

¥ laccept IBM's Torms of Uso

Go

Got a physical
device?
‘We have a partner program for loT along witha

set of verified instructions, o recipes’, for
connacting devices, sensors, and gateways.

Don't have a
device?

You dor't need 1o have a physical device 1o see

Ve SENS0n daty

Figure 12.17 The IBM Quickstart Service page.

myMame
accelX
accelY

accelZ

loT mbed

01875

0.0938

0.8008

26125

CENTRE

0.0985

Click here for more details.

I BleEr=]
/oi Application Detalls - BV x\(ﬁ Mode-FED in Blusmix fo. 3¢ [18M Watson JoT Prastorm x\'ﬂ Node-RED: prpensorrs 3 1\ |
C | & hups/iquick ingsibmcioud = (gevice, ced | &
loT mbed status.termp I've seen my data, what next? =
Usa your dovice in an
ol soi=m

1BM Bluemix.

Go to your Bluemix account
SIGNUP
LOGIN

Node: Vihen you sign up for a trial you

rray have to wait up te 24 houre fo
recene your logrin information

Create an app using the Intemet of
Things Starter from the Catalog
CREATE APP

Note: You will have fo name your app
anciwait for a few mirutes for it to start
running

Whan your app ks running. select the
app URL or type it into the browser
o cpen the Node-RED flow editor

hittpeiteappnames. mybkemix ned

Import the flow for your device into
the Node-RED flow editor

IMPORT FLOW -

Figure 12.18 The IBM Quickstart Service chart and data display.

IoT Projects with Arm® Mbed ™

12.5.2 IBM Registered Service (Bluemix)

To create your own application for viewing and processing your data you will need to
register on IBM Watson Bluemix website:

https://console.ng.bluemix.net/

You can register for a 30-day free trial account (Figure 12.19). After 30 days, you will
need to continue with credit card details, but as long as the number of devices con-
nected and the data metric are less than certain levels, it is still free. See IBM pricing
website for details:

https://www.ibm.com/internet-of-things/platform/pricing/

Just follow the instruction and register and log in. After logging in, you will be asked
to choose your country and create an organization and project name, as shown in
Figure 12.20. In this case, the country is “UK; organization is “London South Bank
University,” and project name is “IoT Projects” Then click the blue “Create App” button
to create your application program.

This will bring you to the IBM Watson catalog page. Select the “Internet of Things
Platform Starter” within the Boilerplates (Figure 12.21). Boilerplates are simply the
ready-made software modules that can be reused in your applications.

BIEIEES
@] I8M Bluemix - Cloud Inf- X
C | & nhttps;//console.ng.bluemix.net/?cm_mmc=devel enter-_-iotfoundation-_-Ip ¥ | &

@5 |BM Bluemix Docs Catalog LogIn m

Welcome to Bluemix

Start using the Bluemix platform Ready to start?

Bluemix is the home of 130+ unique services, including offerings
like IBM Watson and Weather.com, and millions of running Create a free account

applications, containers, servers, and more.

Go o Catalog Learn more about Bluemix:

Pricing Producis Blog Staius

Get started now:

Create a Cloud Foundry app Order a monthly Bare Metal Server

Go straight 1o developing with a Liberty for Java runtime, then Built to spec with 500GB/manth outbound bandwidth included.

add some of our 100+ services to build your app even faster. ready in 2-4 hours.

Create and run event-driven apps Take advantage of loT

Wite application logic and create actions that can be executed Rapidly compose and extend your apps to control and analyze e

Figure 12.19 The IBM Bluemix registration and login page.

245

https://console.ng.bluemix.net/
https://www.ibm.com/internet-of-things/platform/pricing/

246

™

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

A= =

@) Dashboard - IBM Bluem X

& > C | & hups//console.eu-gb.bluemixnet/das

@2, 1BM Bluemix

ooo
ooo
ooo

Apps

You don't have any apps yet. Get started with one of the optiens that follow, or go
to the cataleg to create an app.

Create App

Create a Cloud Foundry app

Go straight to developing with a Liberty for Java runtime, then
add some of our 100+ services to build your app even faster.

Order a monthly Bare Metal Server

Built to spec with 500GB/month outbound bandwidth included,

ready in 2-4 hours.

Figure 12.20 You Bluemix homepage after login.

@] Catalog - IBM Bluemix X

&« C | @ https//console.eu-gb.bluemix.net/catalo

29 Trial Days Remaining v

IBM Bluemix Catalog

All Categories
9 O‘ Search
Infrastructure
Compute
Boilerplates

Get started with a new app, now.

ASP.NET Core
Cloudant Starter

Use the Cloudant
NoSQL DB Se

1BM

Java Cloudant Web
Starter

Use the Cloudant
NoSQL DB ser

IBM

MobileFirst Services
B S

Start building your next
mobile app with

bluemixnet/catalog/starters/internet-of-things-platiorm-starter

hitps://console.eu-g

home | United Kingdom

Internet of Things
Platform Starter
Get started with IBM

Watson loT platf

1BM

Java Workload
Scheduler Web
Starter

This application
demonstrates ho

1BM

Node.js Cloudant DB
Web Starter

Use the Cloudant
NeSQL DB ser

1BM

London South Bank University :

=S Java Web Starter

[al=E] =

10T Pre

Catalog Account

Support

|oT for Electronics
Starter

10T for Electronics is 2
integrated end-to

1BM

LoopBack Starter

This is a sample
Strengloop Loo

1BM

Personality Insights

A simple Java app that
uses the Persona

1BM

Figure 12.21 The available Boilerplates in IBM Bluemix catalog page.

. . ™
IoT Projects with Arm® Mbed
BEIEES
@) Intemet of Things Platfo. X
< C | @ hitpsy//console.eu-gb.bluemix.net/catalog/starters/internet-of-things-platform-starter/?taxonomyMavigation=apps ¥ | &

29 Trial Days Remaining v home | United Kingdom : London South..nk University : loT Projects Q)
-

€@, |IBM Bluemix Catalog Catalog Support Account

< Viewall

Create a Cloud Foundry App

: App name:
Internet of Things
PX-5
Platform Starter AT
Get started with IBM Watson loT Host name Domain
platform using the Node-RED Node js PX-Sensors cu-ghmybluemixnat

sample application. With the Starter,
you can quickly simulate an Internet of
Things device, create cards, generate
data, and begin analyzing and Selected Plan:
displaying data in the Watson loT

Platform dashboard, SDK for Node.js™ Cloudant NoSQL DB

Default Lite

B\

Internet of Things Platform

View Docs

Lite

VERSION 0.5.03
Need Help? Estimate Monthly Cost “
Contact Bluemix Sales Cost Calculator

Figure 12.22 Application creation page.

This will bring you to a new page. Provide names to your Application and Host, then
click on the “Create” button (Figure 12.22). This will take a few minutes to create your
application. When it is ready, click the application URL to open the Node-RED Internet
of Things landing page (Figure 12.23).

Click “Go to you Node-RED flow editor” button, a default IBM IoT QuickStarter
Node-RED program page will appear (Figure 12.24). There are two parts, or two flows
in the program. The top flow allows you to send data to the IBM Ethernet IoT Starter
Kit, the bottom flow allows you to receive temperature data from the Starter Kit. To
make the program work, click the blue “IBM IoT App In” block in the bottom flow, a
configuration panel will appear (Figure 12.25), just type in the correct device ID. Please
ensure the “Authentication” is “Quickstart’.

When the device ID is corrected configured, select the green “device data” block,
then click the “debug” tab on the right-hand side of the page, you should be able to see
the temperature readings starting coming in, as shown in Figure 12.26.

Click the “temp thresh” block, this allows you to set a temperature threshold, if the
temperature goes above this threshold it will display a warning (Figure 12.27).

You can also read potentiometer from the Starter Kit. Just drag a function block from
the left “function” panel, put it under the bottom flow, and wired it up with the blue
“IBM IoT App In” block, as shown in Figure 12.28. Click the function block and enter the
configuration information as shown in Figure 12.29.

From the left “output” panel, drag a debug block into the bottom flow, change it to “msg.
payload’, and connect it to the “Potentiometer 1” function block, as shown in Figure 12.30.

247

248 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

B EEIES
/ @ Application Details - 18} X // [Node-RED in Bluemixo X \\ |
- = R

@ | @ heepsy/pr-sensors.eu-gb.mybluemix.net Q| =

Node-RED in Bluemix

A visual tool for wiring the Internet of Things

IBM Watson IoT Platform

Sl

Node-RED provides a browser-based editor that makes it
easy to wire together flows that can be deployed to the
runtime in a single click.

Go to your Node-RED flow editor

The version running here has been customized for the IBM
Learn how to password-protect your instance
Watson loT Platform

Learn how fo customise Node-RED

We strongly suggest you secure your Node-RED flow editor
with a username and password, as otherwise anyone who
can guess the URL of this application will be able to launch

Figure 12.23 The Bluemix Node-RED homepage.

[all=[=]
/ @) Application Details - 1Bl %) B8] Noce-RED : px-sensors.
S

x
&« C | & httpsy/s

x-sensors.eu-gb.mybluemix.net/r

low/e8f477bd.7bc3e8

Q Flow 1

v input -

Device Simulator
[s L
| inject
'l catch .

£ l Send Data . —— Device payload #.

“ status \;- @ connectzd
— 2. Click to send data
P e N

1. Configure target

T

matt ¢

Cow o
m#. Temperature Monitor

tep o]

Configure source

f::: sate

o ST —— =]
e . X
] @ connected \“, danger Ly

Figure 12.24 The default IBM loT Node-RED application page.

IoT Projects with Arm® Mbed ™ | 249

[all=[@] =

®) Application Details - Bl X /' &8 Node-RED: px-sensors.= X \

& C | & htipsy//px-sensors.eu-gb.mybluemixnet/red/#flow/e8477bd.7bc3e8 | @ o

a Flow 1 Edit ibmiot in node

v input

Device Simulator

inject
“* Authentication Quickstart M
catch
Send Data Device payioal e 1oyt Type Device Event .
status
2 Ciick to send dafa
A, Device Id b240bchE5ced
link
matt W Name IBM 10T App In
http Quickstart: Use the Input Type property to configure this node to
. . receive Events sent by loT Devices, Status Messages referring to loT
websocket et L Devices, or Status Messages referring to loT Applications
Check the info tab, to get more information about each of the fields
tcp

Configure source

| maight

~ output device data

debug ‘
link
mait

http response g

Figure 12.25 The configuration of Device Id of the blue “IBM loT App In" block.

allo|=E] %
@] Application Details - Bl X Y & Node-ReD : prosensorse x __\
[C | & https;//px-sensors.eu-gb.mybluemix.net/rad/# B3
Q Flow 1 + info debug
v input T o
Device Simulator
- L deviceType: "iotsample-mbed-k&4f",
J 1. Configure tz eventType: "status® . }
‘ , 20012017, 10:42:48 nod: Sdad0267 <2571
[] Send Data | ———— Device payload (> I_ msg.payiond : sting[38]
status .1{‘ @ connecied “Temperature (27.25) within safe
_ 2. Glick to send data Limieer
e LT
I Q 200172017, 10:42:48 o 4824137358
T ot 2nypencisampie-mbed-
. bject
hitp O o .
T b { topic: "iot-2/type/iotsample-
| mbed-k64f.", payload: object,
T Temperature Monitor v]
T deviceld: "b24@bcbESced”,
|' o deviceType: "iotsample-mbed-k645",
y Coniigure source eventType: "status” . }
_‘ 0 200172017, 10:42:50 node: 58830267 82521
temp temp thresh = — meg.payload : strng[2a]
_‘ @ connected = “Temperature (27.125) within safe
Limits"
~ output (] 200112017, 10:42:50 node:
ot 2fyperiotsample-mbe
KB41idb240bcbBSoed /evt/status/frison : msg
[
i o ‘ e iot-2/type/iotsample-
mbed-k64f.", payload: object,
deviceld: "b248bcbESced”,
.|| deviceType: riotsample-mbed-ke4s",
oll4 B eventType: "status” .. } S
all¥ =[O+ =

Figure 12.26 The configuration of Device Id of the blue “IBM loT App In" block.

250

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

@) Application Details - Il X /' &2 Node-RED: pr-sensors.c X \

& C | & httpsy/px-sensors.eu-gb.mybluemix.net/red

Q Flow 1 Edit switch node T debug
v input Cancel m T 8
Device Simuia
o “Temperature (26.375) .
inject within safe limits
¥ Name temp thresh
2010172017, 10:44:47 node
catch
Send Dafa 004820137308
Fropeny ~ msg. payload ol-2/ypeliotsample-mbe
e 2. Click to sen KB4/id/b240bcbB5oe
link <= v~ % 30 -1 x
"iot-
matt 2/type/iotsanple-mbed-
> M ‘v % 3p —2 [x Kk64F.", payload: object,
hitp deviceld: "b248bcbesced”,
deviceType: "iotsample-
mperature: A KE4f", eventType:
websocket Temperature Mt m k64F", eventType
“Status” . }
top 2010172017, 10:44:48 node:
Sdad0267.2

‘ malght Pp—
"Temperature (26.875)

20/01/2017, 10:44:48 nods

 CHG -
ot Diypelitzampia-nbed:
[
debug ‘ .
sa : Obiect
+add -
fink io
2/type/iotsample-mbed-
B
- checking all rules (6477, paylosd: object,
deviceld: "b248bcbe5Sced”, -
http response - ‘ 4
El

Figure 12.27 The temperature threshold configuration of the “temp thresh” block.

®)] Application Details - 1Bl X v

Node-RED : pr-sensors.= X \

& C | & nttpsy//px-sensors.eu-gb.mybluemix.net/r

Flow 1

+

info debug

Q
EEEEINNCY
Im Device Simulator
csssadtane B
,- 1. Configure target o
[] Send Data —————
v function y

2hypeliotsample-mbed-
KB4Fii/b240bcbB50edievistatusiimtis

meg : Object

Device payload

@ connecied ¥ { topic: "iot-
~ . 2. Click to send data 2/type/iotsample-mbed-
8 function &) ;_ k645", paylosd: object,
J—— i : "b240|
. 1 .
q template o]
k64f", eventType:
s T — . .
tatus” .
Q delay O status” . }
. 201012017, 10:51:27 modis
trigger Q Temperature Monitor 5dad02b7. 2252

msg payload : string(38]

comment ‘ “Temperature (26.525)
) Gonfigure source e within sofe limits"
@ hitprequest 0 e U
J—— temp temp thresh TR AR node
g switch 0 T danger
Q D ot 2itypefiotsamplambed-
i i KB4f/id/b240bcbB5oe d/evi/status/imt/js
Q change ()
,1{‘ range ‘1{‘ ¥ { topic: "iot-
- - 2/type/iotsample-mbed-
[s)) (m) k64", payload: object,
T .
! deviceld: "b248bcbeSced”,
¢ join 5 deviceType: "iotsample-
b mbed-kB4F", eventType
4 L . Status” .) -
q osv D
~|4 » ‘ »
al[* =|[o][+ =]

Figure 12.28 Add a function block to the bottom flow.

10T Projects with Arm® Mbed"™ | 251

[all=[@] =

®) Application Details - IBl. X /' &2 Node-RED: pu-sensors= X \|_ |

& C | @& nttps//px-sensors.eu-gb.mybluemixnet/red

=} Flow 1 Edit function node info debug

ibmpush .
Cancel Done T &8
m Device Simulator
2df.3f3b8 -

Opentihisk n ¥ Name Potentiometer 1 a- crspsesane s bes

KB41/d/b240bebBS0ad/evistatus imijs

7 SendData Y # Function e e
~ function 1 » { topic: “iot-

Click to send d 2 return {payload:msg.payload.d.potentiometeri}; 2/type/io
function k64f..", payload: object,
devicelId: "b24@8bcbéSced”,

ample-mbed-

template deviceType: "iotsample-
mbed-kE4F", eventType:
delay “status” .}
2000112017, 10:50:54 node:
trigger Temperature Monit I

b7.02

msg.payload : string[30]

BT “Temperature (26.625)
within safe Limits”

hittp request

200172017, 105054 nodis:

20137308
switch
ot 2fyperiotsample-m
KB4 1IIG24008008CR eV StatuS TS
change
msg : Object
range »{ topic: "iot-
2/type/iotsanple-mbed-
split o k64f..", payload: object,
% Outputs 1 - Geviceld: "b24BbcbéSced”,
join deviceType: "iotsample-
See the Info tab for help writing functions. mped-kE4F", eventType:
= “status” . } -
- 4 3

Figure 12.29 The configuration of the “Potentiometer 1" function block.

@) Application Details - IBI :\/g Node-RED : px-sensors= X \\

< G | @ hitps//pr-sensors.eu-gb.mybluemix.net/red/# ol @

Q Flow 1 + info debug

Device Simulafor

00482413308 &

iot-2ftypefiotsample-mbed-

KB4/ /b240bobB502d/evistatusimiis

_ 1. Configure target

[] Send Data | ———— Device payload el
v output - @ connecied ¥ { topic: "iot-
2. Gilek to send data 2/type/iotsample-mbed-

deviceld: "b24@bcb6Sced”,
deviceType: "iotsample-
mbed-k64F", eventType:
“status” }
2010172017, 10:52
Temperature Monitor sdadn

msg payload : strin

(Jhttp response

IS

£ websacket . "Temperature (26.5)
Ny { Configure source within safe limits"
r = ‘ 7/-2 safe !

. p—— 2000112017, 10:52:37 node:
. . oy 20137308
i ‘ @ connecied TN danger

g ot 2ftyperiotsample mbed-

K841/ /b240bcbB5osdievi/statustimis
msg ; Qbject

b { topic: “iot-
2/type/iotsample-mbed-

:

deviceType: "iotsample-
mbed-k64F", eventType
|| "status” .y =

-|4 » 1 3

Figure 12.30 Add a debug block to “Potentiometer 1" function block.

252

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

™

[a]l=]=] =

@) Application Details - Bl X ' 2 Node-RED: pi-sensors.= X

&« C | & httpsy//px-sensors.eu-gb.mybluemix.net/red/# | &=

Q Flow 1 + info debug
D “ v||m
Device Simulator — .
(] mogn enree: ||
_ 1. Configure target
- output @ connected
2. Click to send data
- Doy e |
E bug output payload
link
matt

Temperature Monitor
hitp response

websocket
Configure source

tcp

safe

danger

udp @ connected
mglight
£l pe 3
ibmpush ‘ Potentiometer 1] msg_payload E

Figure 12.31 The debug outputs from the “msg.payload” debug block.

Now select the green “msg.payload” block, then click the “debug” tab on the right hand
side of the page, you should be able to see the potentiometer 1’s readings starting com-
ing in, as shown in Figure 12.31.

12.5.3 Add IBM Watson loT Service to Your Application

To add the IBM Watson Internet of Things Bluemix Service to your application, select
the Internet of Things Platform service on the Bluemix catalog (Figure 12.32).

Click the blue “Create” button in the bottom left corner.

Select to “Restage” your application when prompted, as shown in Figure 12.33.

Select the Internet of Things Platform service that has been created (Figure 12.34).
This will take you to the Internet of Things Service dashboard (Figure 12.35).

Click “+ Create New Board” button on the top-right corner. This will allow you to add
new devices (Figure 12.36).

12.5.4 Add Your Mbed Device to Your Watson loT Organization

From Figure 12.36, click the blue “+ Add Device” button on the top right corner. This
will bring you to create device type page, then enter the corresponding informations,
such as device type, device ID etc., click “Next” button after finishing each page (Figure
12.37-12.40).

IoT Projects with Arm® Mbed ™ | 253

[a][=]®] 3¢

©] Catalog -18M Bluemix x ' 2 Node-RED: px-sensors X

<« C | @ nttps//console.eu-gb.bluemix.net/catalog/t

home | United Kingdom : London South Bank University : loT Prc

[Account

€@, IBM Bluemix Catalog

All Categories

Infrastructure

undr

Internet of Things

A new generation of applications.

o

Internet of Things
Platform

This service is the hub
of all things IBM

1BM

loT for Electronics

]

The loT for Electronics

service supports

1BM

AT&T M2X
m2x

Time Series loT Data
Service

Third Party

QP loT Code-Free

KIQP | App Development

Context Mapping

1BM Watson loT
Gontext Mappin:

1BM

|oT for Insurance

IBM& loT for Insurance
is an integrated

1BM

Car Diagnostic APl

Translation service for
OBD error codes.

Third Party

XpertRule Decision
Automation for

©

Driver Behavior

IBM Watson IoT Driver
Behavior Service

1BM

AT&T Flow Designer

Design, Build and
Deploy loT Salut

Third Party

flowthings.io

agile intelligence for
loT

Third Party

node-RED
Code-Free loT App

Craation
ntemnet-of things-platform/

Decision Author for

hitp node-RED

[a][=][®] 3¢

@] Internet of Things Platfo: %\ &2 Node-RED: px-sensors.e X

&« C | & https://console.eu-gb.bluemix.net/catalo

29 Trial Days Remaining w United Kingdom : London South Bank University

Account

€, IBM Bluemix Catalog

[

€ Viewall

Internet of Things Platform

The IBM Internet of Things service lets Service name:

your apps communicate with and et of Things Blatiorma

consume data collected by your niernet of Things Flafform-oa

connected devices, sensors, and

gateways. Our recipes make it super

easy to get devices connected to our

Internet of Things cloud. Your apps can Features

then use our real-time and REST APls

« Gonnect your devices securely to the
cloud

to communicate with your devices and * Build an app that talks to your devices

Communications between your devices and

consume the data you've set them up
the cloud happen via the open, lightweight

Before your apps can get to work, you

to colleot.
© coleo need to get your devices connected up! MQTT protocol. For example you might have
We have a set of verified instructions, or asensor that collects and sends humidity
- ‘recipes', for connecting devices, readings every minute. Our REST and real-
= sensors and gateways from a variety of time APIs allow you to quickly pullthat devioe
partners and individuals. data into your apps for further analysis
Connect to:
PX-Sensors Images
Click an image 1o erlarge and view screen captures, slides, or videos. Soreen caps show the user interface for
Need Help? Estimate Monthly Cost

Figure 12.32 The IBM Bluemix service catalog (top) and the Internet of Things Platform service
(bottom).

Contact Bluemix Sales Cost Calculator

254 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

[&][=[@] 8
@ Application Details - 181/ X ' 2} Node-RED: px-sensors.c X
<« C | & httpsy/console.eu-gb bluemix.net/a Yr | @

Restage application
Your 'PX-Sensors' app must be restaged to use the new

‘Internet of Things Platform-5a’ service. Restaging makes this
service available for use. Do you want to restage it now?

Figure 12.33 Restage your application.

L (5

EeEl =
® Application Details - 181/ X ' 2} Node-RED: px-sensors.c X
& > C | & ntpsy/console.eu-gb bluemix.net/s | =

29 Trial Days Remaining v home | United Kingdom : London Seuth Bank University : IoT Projects.

% |BM Bluemix Catalog Support Account

()]

Connctions : :
© ~ (o]
Internet of Things Platf... PX-Sensors-cloudantN... PX-Sensors-iotf-service

Internet of Things

Logs

Monitaring

nt NoSQL DB Internet of Thing:

otf-servic Lite otf-service

c6-35bd-43bd-bfSf-124d57bb839"%2C"space Guid™

https://console.eu-gb.bluemix.net/services/2284f34-aeSh-4 200-97 7a-a2d8f52bc691?ace_co:

78"orgGuid

Getting started PX-5ensors stus: @ vourappis ot running 0
Overview

o = | Connect existing | | Connect new |
Runtime

Figure 12.34 The Internet of Things Service platform.

IoT Projects with Arm® Mbed ™

elle]E] %
@) Service Details -IBMBlu. X) [1BM Watson IoT Platform x ' &=} Node-RED : pi-sensors< X
€& > C | @ nttps//7m3ong.internetofthings.ibmeloud.com/da o &

xiaop@Isbuac.uk ¥

JICKST/ S| uUs)] J NTA
IBM Watson loT Platform QUICKSTART TATU DOCUMENTATION D: (Fm3ong)

MEMB

DEVICE-CENTRIC RULE-CENTRIC ANALYTICS
ANALYTICS

5 Cards 6 Cards

Figure 12.35 The Internet of Things Service dashboard.

[Efl=T=] %
) Service Details - 18M Blu X)/ [18M Watson IoT Platform X &2 Node-RED: pr-sensers= X \\
< C | & https//Tm3on.intemetofthings.ibmeloud.com/dash| s/t ¥
jaop@isbuacuk ¥
1BM Watson loT Platform QUICKSTART SERVICE STATUS DOCUMENTATION BLOG T‘I';_"[;’mmg?cu
+ Add Device
Browse \ Diagnose Action Device Types Manage Schemas
o
28
Class ID Date Added Looation m
Jr s. It can be filt
using the Add D

8

o

ES

Figure 12.36 Adding devices to your loT application.

255

™

256 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

@) Service Details - BM Blu- X /' [18M Watson IoT Platform x { 2 Node-RED: pr-sensors.= X

& C | & httpsy//7m3ond.internetofthings.ibmcloud.com/dast

Create Device Type

General Information (i]

Name Tem|

d to identify the d

Description

Thi

tiption an b

Figure 12.37 Create Device Type—General Information.

@) Service Details - BM Bl X ' [} 18M Watson IoT Platform X { B2 Node-RED : px-sensors.c X

< C | & https;//Tm3ond.internetofthings.ibmcloud.com/dashboard/#/d

Create Device Type

Define Template ﬂ

td Serial Number (1 Description
Manufacturer Firmware Version
Model Hardware Version
Class Descriptive
Location

Figure 12.38 Create Device Type—Define Template.

IoT Projects with Arm® Mbed ™

[all=[E] =

@) Service Details - IBM Blu: X /' [IBM Watson IoT Platform X ¥ E Node-RED : px-sensorsc X

& C | @ https//7m3ong.internetofthings.ibmcloud.com/dashboard/#/devices/device Types/createtype

Create Device Type

Submit Information

Serial Number

Description

Figure 12.39 Create Device Type—Submit Information.

12.5.5 Adding Credentials onto Your Mbed Device

You can now get your device credentials, as shown in Figure 12.41. Copy them and add
them to your IBM IoT Client Ethernet Example program code, as shown in Figure 12.42.
Compile and run the program on your mbed device. The device will now run in regis-
tered mode.

Now you should be able to see all your sensor information of the mbed board from
your IBM Bluemix application, as shown in Figure 12.43.

12.5.6 Link Your IBM loT Watson Application to Your Mbed Device

From the IBM Bluemix dashboard, as shown Figure 12.44, select your application and
click the application URL to open the Node-RED landing page. Select “Go to your Node-
RED flow editor” button to view your application. Double-click the “IBM IoT App In”
node in the flow editor and configure the node with correct device type and device ID,
as shown in Figure 12.45. Please ensure the “Authentication” is “Bluemix Service.”

Click the red “Deploy” button to run your application.

Now you should be able to see your mbed device and the corresponding sensor read-
ings from Device-Centric Analytics page, as shown in Figure 12.46.

257

™

258 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

©) Service Details -IEM Bl X /' [} 18M Watson loT Platform X 2 Node-RED: px-sensorss X

< C | & nttps//7m3ond.internetofthings.ibmecloud.com/da:

Add Device

Device Info

Device ID b240bct

Serial Number

Description

+ Additional fields

[all=]=] =
@) Service Details - 1BM Blu- X) [18M Watson IoT Platform X Y B2 Node-RED : px-sens: X
< C | & https//7m3ond.internetofthings.ibmeloud.com/da ¥ | m

Add Device

Summary

k that all submitted information for this

Device Type TemperatureSensor
Device ID b240bcb65ced
Serial Number

Manufacturer

Model

Description

Firm

Hard

Descriptive Location

Figure 12.40 Add Device—Device Info (top) and Add Device—Summary (bottom).

IoT Projects with Arm® Mbed ™ | 259

[Bll=[=] &
/ @) Senice Details - 1BM Blu. X /' [] IBM Watson IoT Platform X Y B2 Node-RED: px-sensors.e X
&« G | & https//7Tm3anS.internetofthings.ibmcloud.com/dashl vices/browse/drilldown/TemperatureSensor/b240bcb65ced b

Your Device Credentials

Device b240bcb65ced

You have registered your device to

ganization. Te

d these, you should see
Information’ section on this page

t it connected, you

ages sent from your

Organization ID 7m3ond

ice Type TemperatureSensor
Device ID b240bcb65ced
Authentication Method token

Authertication Token FUy5--blgBak-5)KZ-

Authentication tokens are non-recoverable. If you misplace this token, you will need to re-register the device to generate a

new authentication token.

Find out how id these ntials to your device A

Connection Information

Figure 12.41 Your Device Registration Credentials.

S Mbed Compier tEALSTC %

osmbedcom

T Mew ~ P Import |%] Compile ~ | @ Commit v (2} Revision] (Ll Hep

FROM-KG4F g

Progrom Workspace Sy

FROMAKS4F_TCPEChoServer

L] FROaKE4S Temperaturbonitoringl
() FROaKE4F_Ticker

L FROMAKESF_Timecnt

[FROM-K64E_Tiner

[FROMAELF_Ukrasound_HO-SR0E
LA PROM-Ke4#_vietrserver
FROM-KEAF_WabSarvar}

FREM-KGAF_WebSocket
FREM-KR47_Websocket_Erhemet_H

L TEMEaTORecREthemetEvample
1832

(i
) Ethermetingertace

ngTT

Arll1Zaizh

] c0z7h

] KE4ER
WPCITER R

] mancpp

i) mbed v

JEDEmoAam_gpo
LPC1 765 _espB66test
L) mibed-coemample-birky

1) mbed-cs-example-fat flesystem-mze
L7 mived-comexample-tis-mherypt

L) mbed-os-example-tis-tis clent

18] mibed_bawicy

L Websorket_Ethemet_Helloword

Verbose
Emor humber | Resource

Compile catput for program: [EMIcTClentEthemetExample
Description

> Complle Oulput. | Aind Results Natiications 8

Ready. In 43 wl

57

Emon: 0
In Felder

mings:0 | Infos: 0

Location

ms | &=

Figure 12.42 Using your device credentials in your mbed program.

260

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

@) Service Details - BM Blu- X /' [18M Watson IoT Platform x { 2 Node-RED: pr-sensors.= X

& C' | & httpsy//7m3ond.internetofthings.ibmcloud.com/dashb:

drilldown/Temperature$

Sensor Information [)

Time
Event Datapoint Value Received

status d.myName loT mbed 20 Jan
2017
1:48:49

status d.accelX -0.1408 20 Jan
2017
1:48:49

status d.accelY 0.0938 20 Jan
2017
1:48:49

status d.accelZ 0.9845 20 Jan
2017
1:48:49

status demp 265 20 Jan
2017
11:48:49

status dijoystick CENTRE 20 Jan
2017
11:48:49

status d.potentiometer! 0.0007 20 Jan
2017
1:48:49

status d.potentiometer2 0.00M11 20 Jan
2017

Figure 12.43 The sensor information of your mbed device on your IBM Bluemix application.

[Ell=]=] =

@) Service Details - BM Bl X ' [} 18M Watson IoT Platform X { B2 Node-RED : px-sensors.c X

< C | & https;//Tm3ond.internetofthings.ibmcloud.com/dashb g

xiaop@isbuac.uk ¥

JUICKST/ 3| V us JOCUI NTA)| oG
IBM Watson loT Platform QUICKSTART ATU DOCUMENTATION BLOG ID: (Fm3ont)

Devices
+ Add Device
Browse \ Diagnose Action Types Manage Schemas -
Device ID Device Type Class ID Date Added Location m
Jal Device 20.Jan

Figure 12.44 Your IBM Bluemix dashboard.

IoT Projects with Arm® Mbed"™

4 Authentication Bluemix Service
© Output Type Device Command

o Device Type

4 Device Id b240bch65ced
+, Command Type | blink
I Format json

£ Data

Figure 12.45 Your IBM Watson loT Application Node-RED page.

12.5.7 Sending Commands from Your IBM loT Watson Application to Your
Mbed Board

From your Node-RED editor, navigate to the menu at the top right of the screen and
select “Import” — “Clipboard, as shown in Figure 12.47.

Copy the JSON string from the link below and paste it into the dialog box in Node-
RED and select “Import,” and the imported JSON code should generate a new sub-flow,
as illustrated in Figure 12.48.

https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/
ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_
mc_sid_50200000=1484906035

Connect “blick rate” node with “Potentiometer I’; as shown in Figure 12.49.

Double-click the “IBM IoT Out” node, and enter corresponding configuration infor-
mation, as shown in Figure 12.50. When finished, click “Deploy” button to activate the
program.

Now, by twisting the potentiometer 1, you should be able to change the flashing rate
of the blue LED. Figure 12.51 shows the corresponding terminal outputs.

12.5.8 More with Node-RED

From your Node-RED editor, navigate to the menu at the top right of the screen and
select “Manage palette; as shown in Figure 12.52.

An “Install” tab will appear on the left hand side of Node-RED editor, as shown in
Figure 12.53. Search for “dashboard” and select “node-red-dashboard,” and click the red
button “Done.”

The Node-RED dashboard module should now be installed and appear at the left side
of the Node-RED editor, as shown in Figure 12.54. As you can see, there is a whole range
of gadgets available, e.g., buttons, switches, sliders, gauges, forms, charts etc.

261

https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035
https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035
https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035

262 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

EIEEES
) Senvice Details - BMBlu: X) [18M WatsonIoT Platform x ' &= Node-RED: px-sensors: X
< C | @ htips//7m3enS.intemetofthings.ibmecloud.com/dashboa @Isbu.ac.uk-Analytics| | &=

IBM Watson loT Platform QUICKSTART ID: (7m3ong)

Device-Centric Analytics + Add New Card

{8k Devices | Care About {8} Device Info

Device name
Device ID Device type Actions b240bcbe5ced

b240bcbdSced TemperatureSensor 3 Device ype
TemperatureSensor

ClientID
d:7m3on9:TemperatureSensor:b240bcb

Creator
Xiaop@lsbu.ac.uk

Time created
11:27 20/01/2017

Alerts
No

[Rule Alers For That Device = [Rule Alert Info o} Device Properties

Last 24 hours Device name
e b240bcbBsced

/ @} Senice Details - IBMBlu. X) [I8V Watson IoT Platform x { &= Node-RED: px-sensors.c X

<« C' | @ https//7Tm3onQ.internetofthings.ibmcloud.com/dashb

@lsbu.ac.uk-AnalyticsDef

IBM Watson loT Platform QUICKSTART

[Rule Alerts For That Device = M Rule Alert Info

Last 24 hours Device name
S=HEmEEl b240bchesced

accelX
-0.0938

accelY
0.1406

accelZ
0.9845

00
d:b joystick

CENTRE

No alerts to show
myName

loT mbed

potentiometert
09985

potentiometer2
0.0011

temp
2775

Figure 12.46 Device-Centric Analytics page, with device info (top) and device properties (bottom).

IoT Projects with Arm® Mbed ™

all=lE] %

@] Service Details - BM Blu: x ¥ [IBM Watson IoT Platform x / E Node-RED : px-sensorsc X

&

C | @ nhtips//px-sensors.eu-gb.mybluemix.net/red/# g

View

Import
Device Simulator Clipboard P
4 Library
Search flows
Send Data Device payload
¢ Configuration nodes
2. Cliek to send data 3
i « Flo
& o [
language Manage palette
identification

mperatur itor rd shortcuts
language Temperature Monitor

translation

Node-RED website
Configure source

temp e temp thresh

personality @ connecled danger

Insights

device data E

Potentiometer 1 p—t msg_payload E

9.0005

watson visual hd L Y

hitps://px-sensors.eu-gb.mybluemix.net/red/#

Figure 12.47 Import menu in Node-RED.

Figure 12.55 shows adding a chart to the program, connected to the “temp” node,
and Figure 12.56 shows the corresponding display of the chart from the application
web page.

You can also send emails or Twitter messages using Node-RED. Figure 12.57 shows
how to add an “email” node (available under “social” category) to your program. In
this case, when the temperature is exceeding the threshold value, it will send you
an email.

Figure 12.58 shows how to add a “twitter” node (available under “social” category) to
your program and the corresponding configuration. In this case, when the temperature
exceeds the threshold value, it will send you a Twitter message.

Further Information about IBM Watson and loT Starter Kit:

https://console.ng.bluemix.net/docs/starters/IoT/iot500.html
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-
platform-/?ALLSTEPS
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-1/
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-2/

263

https://console.ng.bluemix.net/docs/starters/IoT/iot500.html
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-platform-/?ALLSTEPS
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-platform-/?ALLSTEPS
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-1/
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-2/

264 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

@] Service Details - 1M Blu x\< [1BM Watson IoT Platform X) & Node-RED: px-sensorse X _

&« (¢} ‘ @ https)//px-sensors.eu-gb.mybluemix.net/red/# {'{‘ =

Q Flow 1 + info debug

Device Simulator ueviteIype:

"TemperatureSensor”,
1. Gonfigure target eventType: "status” . }

1 20/01/2017, 11:54:14 node:

B g
> J Device payload (>
Pr——— payl)T(

28460a82.804076

msg.payload : number

2. Click

Import nodes 8.0007

20/01/2017, 11:54:15 node:

= 5dad02b7.8252fc
msg.payload : string[35]

"id": "6fc0879c.903f78", “Temperature (27) within

"type": "ibmiot out",
"authentication

safe limits"

Tempera e 20013017 115415 nde

2131308

ot-

Configu Importto | curentflow | new flow

2ityperTamperatureSensorid/b240bcbl

@
~

msg : Object

¥ { topic: “iot-
connected

Cancel 2/type/TemperatureSensor/i.

payload: object,
k{‘ . deviceId: "b24@bcb65ced”,
) deviceType:
"TemperatureSensor",
£ Potentiometer 1 E)—\E] SYENLIYPES S stanei o)
ol f - 20/01/2017. 11:54:15 node:
204b0a02.ac4076

msg.payload : number

0.0007 o
— lwatson visual | 7|4 3 4 »
Al[v

@) Service Details - BM Blu X \< [1BM Watson [oT Platform X YE Node-RED : pr-sensorse X _

&« c ‘ @ https://px-sensors.eu-gb.mybluemix.net/red/# {'{‘ =

Flow 1 + info debug
Configure source Y | &
p— . Wa'1 IS ~
@ connected < SEEE cventTyps: “status” . }
20/01/2017, 11:58:27 node:
: msg.payload : number
0.8007
— . 5
<) . Potentiometer 1 :)—(E [] 2010112017, 11:58:28 node:
[Et
5dad02b7.a252fc
Y msg.peyload : string[28]
[Control LED blink rate using Potentiometer{ “Temperature (27.25)
2010172017, 11:56:28 node:
r—q 2df.31308
o) blink rate (ot-
| S E—— |
2hyperfemperatureSe b240benl
»{ topic: "iot-
2/type/TemperatureSensor/i..
payload: object,
deviceld: "b24@bcbESced”,
deviceType:
“TemperatureSensor”,
eventType: "status” .. }
204b0a02.ac4076
() msg.payload : number
- || @.ee07 -
[~ watsan visual | 7| < [K »
~|[v =|[o][+ o

Figure 12.48 Import JSON code using the clipboard in Node-RED (top) and the new imported flow in
Node-RED.

[oT Projects with Arm® Mbed"™ | 265

[SlEE)

®] Service Details - IBM Blu. X \< [1BM Watson IoT Platform X y Node-RED: pr-sensors.e X _

& C | @ hitps//pr-sensors.eu-gbmybluemixnet/red/# L

Q Flow 1 + info debug

Configure source T &

T E temp

@ connecled C

usvicelype

"TemperatureSensor’

danger

eventType: "status

.8005
.
; Potentiometer 1 ¢
J

5dad02b7.8252fc

msg paylosd : string[27]

“Temperature (27.5)

#

- critical”

Control LED biink rate using Potentiometeri -] 20/01/2017, 12:00:38 nods

cDe48241.31308
E -

2ltype/TemperstureSensorfid/o240bchl

#

#

o msg : Object

E blink rate .
¥ { topic: "iot-
2/type/TemperatureSensor/:
deviceld: "b248bcb6Sced”,
deviceType:

“TemperatureSensor®,
eventType: "status” .. }

20/01/2017. 12:00:38 node
204b0a82.204876
msg payioad : number

0.6005 -

[watson visual | ~|4 3 “ 3

a||v =|O]|+ =

Figure 12.49 Connect“blick rate” node with “Potentiometer 1."

[all=[E=] =

@) Service Details - BMBIu X \< [18M Watson IoT Platform X >/ Node-RED: px-sensors.= % \§

< C | & ntips//px-sensors.eu-gb.mybluemixnet/red/#

aQ Flow 1 Edit ibmiot out node info debug

Configure source Delete Ccancel Do Y| &

4Tod4e25.073e4

@ connected * Authentication Bluemix Service v msg payload : string[13]
e 5 g
: l & Output Type Device Command M 2000172017, 125423 node:
) Sdad0267.a25%F0
+f Device Type ‘ rature e msg.payload : string[35]
Potentl “Temperature (27) within safe
&, Device Id b240bcb65ced limits”
200112017, 128623 node:
#, Command Type | biink e
ot
N iype TemperstureSensordin240bcbe fosdd
i Format json meg : Object
» ¢ topic: "dot-
Epaa 1 2/type/Temperaturesensor/ i,
payload: object, deviceld:
@ Qos 1 v "b24@bcb6Sced”, deviceType:
*TemperatureSensor”
¥ Name 1BM IaT App Out eventiype: "status®
200112017, 128423 node:
20400a02.006070
Note: If there is a property in the message that corresponds to any of)
the values entered above, then the property in the message takes. o
precedence. See the Info tab for more details. 0.9987
Example JSON device event: ("0":{'myName""Arduino Uno", 200112017, 128423 noge:
“temperature"-939]} Sea4ezs 708
g paysd - stingl13]
“f "rate: 5) =
|~ watson visual [~ J D
&

Figure 12.50 The configuration information of “IBM loT Out” node.

™

266 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

v COMIS - Tera Term VT ||| ||
File Edit 5Setup Control ?Wnduw Help

LB int publ

LOG: int publ
L#417 Puh

i = =
M
w1 info
it
D
e
= ENST.N ; Sercic B kT Pt ||
. Cebug output paioed
o
-
=
makgh -
== O ee — e P irvest R
& s
....... =
debxg
roestaro magpaoas

Figure 12.52 The“Manage palette” menu in Node-RED editor.

IoT Projects with Arm® Mbed ™

R LT T ————

ERETE

device care
magpdy0ad

b pyttell

Figure 12.53 The“Install” tab on the left in Node-RED editor.

I R L B T

+ ik detug castitca:

Figure 12.54 The “dashboard” module in Node-RED editor.

267

268 | Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™

o Dashboard - B0 Bserr % /[Mode-tD: pupersan %

| & = @[@ Secure | hitpe/ipe-sansorsmybhuamibtnet/rec/efiow/adTedi23835a T

Q Flow 1 Flow 2 + info debug dashb %

Plots the Input values on a chart, This
can efiher be a time basad line char, a

= Temperature Monitor E] bar chart (vertical or horizontal), o a ple
ot char,
Each input msg load vaiue will be
slider Configure saurce LT e converted to @ number. If the conversion
c ' y falls, the message Is ignared,
e O~ e
(punaeeec b | U danger ' Minimum and Maximum ¥ as values

bt mput == are optional. The graph will auto-scale to
any values received.

- : Muitipie lines can be shown on the same

char by using a different msg. topic
wvalue on each input message,

i
L !: The X axis defines a time window or a

P — chart maximum number of points to display.
. gauge IEI ul_chart Older data will be automatically removed
= - from the graph. The axis labels can be
3 E Piots the input values on a chart. This can either formatted using a Moment js time

_ be & time based line chart, a bar chart (vertical Sarmathed sl
out E o horizontal), o a ple chart. formatted String.
The Blank label field can be used 1o
display some text before any valid data is
received.
The node output contains an array of the
s chart stale that can be persisted If
needed. This can be passed Into the

0
=][o][+

Figure 12.55 Adding a“chart” node to the program in Node-RED editor.

- o x
& Applcation Dytads - 161 0 (G Node-RED: putemson. 3) o Kode-HD Dashboard 2t
N Al ————— @ v

Home

Default

chart

7o

16

160

15 5

152848 152855

MO TChertithem. b ~ Show at *®

Figure 12.56 The“chart” display.

M

IoT Projects with Arm® Mbed"™ | 269
. o x
] B Mode R0 prperaors %
| € @ [& secure | nitpsipuesemsorsmybluemicnet e eiow/aiTeatds 835 T

Q Flow 1 Flow 2 + info debuy dash

Node
Type e-mal
o] e41266a9.1851a8

* Properties

Sendsthe msg.payload
a3 an email, with a subject
of msg.topic .

The default message
recipient can be configured
in the node, if itis lef blank
it should be set using the
msg.to property of the
incoming message. If left
blank you can also specify
msg.cc andior msg.bcc
properties.

You may optionally set
msg. from In the paykoad
which will override the
userid default value,

The payload can be himi
format.
- | If the payload is a binary
Bt thn it will b =
. o x
& Dastboard - i Boer. % [Mode-RID: puperaans %
| € = @ [@ Secure | htups//peesensorsmyblusmicnat recy iow/al Tedial 835 e

Q Flow 1 Edit e-mail node info debu dash
Node
Type 1
. Temperafure M | ool e
~ social =T 5] ©41266a8.1851a8
* Properties
& mail Configure source @ Server smip.gmail.com
CRESHRE e eadhidnig
twither - e -
- 2 Port 465 as an email, with a subject
- el of msg.topic .
" &Userd xiacp@gmail.com The default message
Lt < { recipient can be configured
& Password —— in the node, if it is left blank
~ storage it should be set using the
msg.to property of the
p— s incorming message. Iflef
blank you can also specify
L msg.cc andior msg.bcc
properties.
ibm hdts “You may optionally set
msg. from In the paykoad
L which will override the
T userid default value,
The payload can be himi
cloudant format.
If the: payload is a binary
v analysis = Faiffir than it will he =

Figure 12.57 Adding “email” node to your program (top) and the corresponding email configurations
(bottom).

270

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

< C | @ Secure

v social

@] Dashboard - IBM Bluem X

IS Node-RED: pr-sensorss: X

Flow 1

Temperature Monitor

T
email (]

| twitter (-

0 emai

0 twitter

v storage

o mongodb

‘me ibm hdfs
. .
. ibmhdfs .
9 cloudant \i‘

 mongodb |
; cloudant J

v analysis

«e

Configure source

connected

hittps;//px-sensors.mybluemixnet/red/#flow/a37edf43 9395

Flow 2

Tweet

+

=[Ol *

info debu dash

@] Dashboard - IBM Bluer

< C | @ Secure

OpenWhisk

v social

e mail
twitter
e mail

twitter

v storage

mongodb

ibm hdfs
ibm hdfs

cloudant
mongodb

cloudant

v analysis

/B8 Node-RED: pr-sensors:: x

Flow 1

Temperature Monitor

Configure source

hitps://px-sensors.mybluemix.net/red/#flow/a37edf43.939a5

Flow 2

Edit

Delete

& Twitter ID

W Name

twitter out node

Add new twitter-credentials..

Tweet

- O X
@ T x

Deploy ~ =

info debu dash
Node
Name Tweet
Type twitter out
ID aa7bdc35.46915
» Properties

Twitter out node. Tweets the
msg.payload .

To send a Direct Message
(DM) - use a payload like "D
{username} {message}"

If msg.media exists andis a
Buffer object, this node will
treat it as an image and attach
itto the tweet.

If msg.params exists and is
an object of name:value pairs,
this node will treat it as
parameters for the update
request.

Figure 12.58 Adding “twitter” node to your program (top) and the corresponding Twitter
configurations (bottom).

IoT Projects with Arm® Mbed ™

12.6 Real-Time Signal Processing

In many applications, such as real-time voice and signal processing, you will need to
read the analog input and process it as fast as possible. In this project, we will demon-
strate how to develop a real-time signal processing application by using fast analog
inputs and fast analog output.

Hardware Required

e Arm® Mbed" FRDM-K64F (or LPC1768) development board

e Mini USB cable and Ethernet cable

o PicoScope (https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview)

Software Required
e An Internet browser

Procedure

The following example uses AO as the analog input (for LPC1768 is P17) and uses the
Timer to record the time. It first use a while loop to read 4096 data points from the
analog input, it also use Timer’s “read_us()” function to get the time in microseconds,
then it uses a for loop to print the time (seconds) and data to computer through virtual
COM port.

R RS R SRR EES

// Example 12.11
#include "mbed.h"

#if defined (TARGET K64F)
AnalogIn ain (A0) ;

#elif defined (TARGET LPC1768)
AnalogIn ain(pl7);

#endif

Timer t;
double t1=0,t0=0,tp=0;

int main (void)
{
t.start () ;
to=t.read us/();
int i=0;
double dt [4096] ;
double val [4096] ;
printf("Recording.................. \r\n");
while (i<4096) {
val[i]=ain.read() ;
tl=t.read us()-t0;

271

https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview

272

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

dt[i]=((t1)*0.000001) ;

tp=t1;

I++;
}
printf ("Printing................. \r\n");
for(i=0;1<4096;i++){

printf ("$f\t%f\r\n",dt[i],vall[i]);

}

Printf ("DONE.uuuuuuueennennn. \r\n");

}

R S S S R S

Figure 12.59 shows the corresponding Arduino Serial Monitor outputs. The first col-
umn shows the time in seconds, and the second column shows the analog input values.
As we can see, it can read the input as fast as about 0.00002 s, or 20 pus—that is, about
50 KHz!

Exercise 12.7

Modify the above program so that it saves the time and data values to a text file on an
SD card (for LPC1768, local file system).

& com? - O ®
Send

Recording.coeeerennnannannn A

Printing..ceceeveennannnn

0.0281582 0.2002589

0.0259203 0.260853

0.029225 0.259205

0.029246 0.195285

0.02592688 0.231434

0.029289 0.242145

0.029311 0.191836

0.028332 0.282882

0.025354 0.285115

0.029375 0.350851

0.029397 0.300816

0.029418 0.172808

0.0259440 0.302113

0.029461 0.175372

0.029483 0.131319

0.029504 0.319921

0.029526 0.231205

0.029547 0.186374

0.029569 0.261433

0.029590 0.168185

0.029612 0.190082 W
BothML&CR ~ | 9600baud -

Figure 12.59 The Arduino Serial Monitor outputs.

10T Projects with Arm® Mbed™ | 273

For LPC1768 development board, there is a FastAnalogln library; see the following
link. It uses the burst feature to read analog input at the background.

https://os.mbed.com/users/Sissors/code/FastAnalogln/

The following example uses FastAnalogln library to read analog input from P15 pin.
It also uses Timer to get the time information. It first start the time, then uses a “for”
loop to read in 4096 data points (as 16-bit integers), and then uses another “for” loop to
write the time (microseconds) and data to a text file called “out2.txt”.

R R i kR R kI ko

// Example 12.12

#include "mbed.h"
#include "FastAnalogIn.h"

FastAnalogIn inputl (pl5) ;
Timer t;
LocalFileSystem local ("local") ;
struct packet
int times[4096];
uintlé t samplesl[4096];
}i
int main()
t.start () ;
packet sample data;
for(int i=0; 1<4096; i++) {
sample data.times[i] = t.read us();
sample data.samplesl[i] = inputl.read ulé6();
}
FILE *fp = fopen("/local/out2.txt", "w");
for(int i=0;1<4096;1i++)
fprintf (fp, "%$d\t%d\r\n",sample data.times[i], sample
data.samplesl[i]) ;

}

fclose (fp) ;

}

ER R R R kR R ko

Figure 12.60 shows the content of “out2.txt.” The first column is the time (microsec-
onds) and the second column is data (as 16-bit integers). As we can see, it can read data
as fast as 2 us, or an impressive 500 KHz! That is about 10 times faster than normal
analog inputs!

But unfortunately, the FastAnalogln library only support a few development boards:
e LPC1768

e LPC4088
e LPC11u24

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

274

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

| OUT2 - Notepad
File Edit Format View Help
e 48876
2 48876
4 48876
5 39964
7 39964
8 39964
18 39964
12 39867
13 39867
15 39867
16 39787
18 39787
19 39787
21 39787
23 39691
24 39691
26 39691
27 39578
29 39578
31 39578

Figure 12.60 The content of out2.txt file.

o KLxx
¢ K20D50M

and FRDM-K64F is not supported.

The following example demonstrates how to generate fast analog outputs, but setting
the analog output pin DACO_OUT (for LPC1768 is P18) to 0.5 (1.65V) and 0 (OV) alter-

natively without any delay.

R S S S S S S R S S

// Example 12.13
#include "mbed.h"

#if defined (TARGET K64F)

AnalogOut aout (DACO_OUT) ;

#elif defined (TARGET_LPC1768)
AnaloglIn aout (pl8) ;
#endif

int main(void)

{

while (1) {
aout.write(0.5f) ;
aout.write(0.0f) ;

}

// or aout = 0.5f;

R S S S S S S R S S

IoT Projects with Arm® Mbed ™
Ay PicoScope 6 - O X
Eile Edit Views Measurements Tools Help
[s | 0| 2 @ [1usaw]t B|[2s Bl 2oz D @[MMA RS DS pico
Ay |Auto DC |
F =

00

| value | Min |Max | Averzge |o | Capture Count | Span
Frequency G667 kHz 6667 k. 667 kHz 6668kHz 1646Hz 20 Whole trace

Running @) @ | Trigger |Auto [[a I EY EIEEEE Measurements 3] Rulers

Figure 12.61 The PicoScope output of analog output.

Again, we can observe the analog output by using an oscilliscope. Figure 12.61 shows
the corresponding PicoScope output. The results show that we can set analog output as
fast as 666.7 Hz.

By combining the fast analog input and fast output, we can make a very useful pro-
gram that can perform real-time signal processing. The following example reads the
analog input (val), then updates the (vals), which is calculated by using 20% of (val) and
80% of previous (vals). This is the equivalent of applying a low-pass filter that can
smooth out the data and remove high-frequency spikes, and finally, pass the (vals) to
analog output. In this case, the analog output is the limiting factor, so the program
should be able to process voice and signals up to 666.7 Hz.

R S S S S

// Example 12.14
#include "mbed.h"

#if defined (TARGET K64F)

275

276

Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

Analogln ain (A0) ;

AnalogOut aout (DACO_OUT) ;
#elif defined (TARGET LPC1768)

Analogln ain(pl7) ;

AnalogIn aout (pl8) ;
#endif

int main (void)

{
double val=0;
double vals=0;

while (true) {
val=ain.read () ;
vals = 0.2*val + 0.8*vals; //low-pass filter smoothing
aout.write (vals) ;
PR R R R R E R EREREEEEEEEEEEREEEEEEEE R LR E RS RS EEEEEEERE R SRR EE LR LR RS

The following example reads two analog inputs A0 and A1l (for LPC1768 are P16 and
P17), and calculates a weighted average, 30% of A0 and 70% of A1, and writes the value
to analog output.

R S R S

// Example 12.15
#include "mbed.h"

#if defined (TARGET K64F)
Analogln ainl (A0) ;
Analogln ain2 (Al) ;
AnalogOut aout (DACO_OUT) ;

#elif defined (TARGET LPC1768)
Analogln ainl (ple6) ;
Analogln ain2 (pl7) ;
AnalogIn aout (pl8) ;

#endif

int main (void)

{

while (true) {
aout = 0.3*ainl.read()+ 0.7%*ain2.read();

}

R S S S R S S

IoT Projects with Arm® Mbed™ | 277

The following example reads the analog input A0 (for LPC1768 is P16), delays nine
times, and writes the value to analog output.

ER R R kR ki ko

// Example 12.16
#include "mbed.h"

#if defined (TARGET K64F)
AnaloglIn ain (A0) ;
AnalogOut aout (DACO_OUT) ;

#elif defined (TARGET LPC1768)
AnaloglIn ain(pl7) ;
AnaloglIn aout (pl8) ;

#endif

int main(void)

{

double val[1l0];
int i=0;
while (true) {
val[i%10] = ain.read();
if (i>=10){
aout.write(val([i-1]);
}

i4+;

}

ER R R R R ko

Exercise 12.8

Modify the above program so that it reads analog input A0 and Al, delays Al nine
times, and writes the average value to analog output.
Further Information about FastAnalogin:

https://os.mbed.com/users/Sissors/code/FastAnalogln/

12.7 Summary

This chapter provides some IoT project examples using the Arm® Mbed" Ethernet IoT
Starter Kit, such as, temperature monitoring over the Internet, smart lighting, voice-
controlled door access, RFID reader, cloud example using IBM Watson Bluemix, and
fast analog inputs and outputs.

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

Part IV

Appendices

In This Part

Appendix A: Example Codes

Appendix B: HiveMQ MQTT Broker
Appendix C: Node-RED on Raspberry Pi
Appendix D: String Operations
Appendix E: Useful Resources

279

281

A

Example Codes

All the example codes used in this book are available on the following website:
http://www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

To use these example codes from your online compiler, just click the “Import!” button
on the top left menu. An “Import Wizard” will be displayed in the middle, select the
“Upload” tab, and an “Choose File” button will appear at the bottom (Figure A.1).
Please note that the “Import!” button on the top right corner of “Import Wizard” panel
is disabled.

Click the “Choose File” button and navigate to the directory that you have downloaded
your example code files to. Select the example file you want to import and click “Open”
button (Figure A.2). All the example codes are compressed in zipped format.

- (=} x
B rmied Compier mpart | %
L C | 8 Secure | hipsidewopembrd v ® Y|
mbed Import Wizard
Y ew . 1 s | [Lndp FROM-EE4F g
Program Werkspace < Import Wizard Repository Details
£F] My Progeams y-ll Import files from your Local Machine
*'3:’; Sebect oree or mione fikes to be imported. Yiou £ S50 draoBanop then in your workepace.
= 1o import from URL.
Progeaes | Libraries Mﬂulul Search
Listing local machine files to IMport in your workspace.
Hame type
Sebect & scource ke below 1 add & to the import queue
Add File I'icri‘ﬂ‘mﬁ
Risadly. ws | = =

Figure A.1 Import example code from the online compiler.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

http://www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

282 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

[mised Compier impor ' x

4 | .
« C | @ Secure | hitpsy/developer.mbed.ong/compder, #nav ekimpoi_wiza -
mbed Import Wizard
o [y] e | o | ot~ | 2| | | G s o
Program Workspace < Import Wizard Repesitory Details
] My Programs f Import files from your Local Machine =
Select oné or mone Bles to be imported, You can also dragidrep them in your werkepacs. e
k o mpart from URL.
Programs | Libraries | Bookmarked = Upload Search || Search
Listing local machin files to Impaort in your workepace
Name: type
Sedect & source file below to add it to the impart queus
@ Open »
“ = 4 4 > ThaPC » Downloads w & Seach o L
Orgunize = Hewfolder - m @
I T PG = ;"“ g
Exaerple, 5.1
[Desiteps
B Boc B tampe 32
- Btamgie 33
& Downleats W towpie 54
& Mie W eompie st
& Pictuses B gl 5.6 v
8 videes L 2
Fie game: [Example 5.1 ? -
2= [])| conen
o —
Add File | Choose fike | No file chosen
Ready. ws | @ =

Figure A.2 Choose the example code file to import.

The selected file will then appear in the “Upload” tab. Now, the “Import!” button on

the top right corner of “Import Wizard” panel should be enabled. Click the “Import!”
button to import the file (Figure A.3).

H - o x
& mied Compler impon . x
« C | @ Secure | hitpsy/developer.mbed.org/compiler/#na LY.
mbed Import Wizard
PyNew v | £ import | b Save | . 2w | — v oo | ~ | [meip FROM-KEAF
Program Workspace < Import Wizard Repository Detalls
[My Programs g Import files from your Local Machine i
Sedect one or more files to be imported. You can also dragBdrop them in your workspace.
k to import from URL. b Inaport!
Programs | Lbranes | Bookmarked | Upload
Listing local machine files to import in your workspace
Name type
Add File | Choose file | No file chosen [Remove Seected
Ready. ms || =

Figure A.3 Import example code by clicking the “Import!” button.

A Example Codes
H - o x
B mied Compier impont 3
« | @ Secure | hitpsy/developer.mbed.ong/compiler/#nav.panekimpon wizard: L%

Import Programes

Tmiport Programs.
IMPOrE PrOGraNTs from Mbed.crg INKD your werkspace.

Figure A.4 The“Import Programs” pop-up window.

An “Import Programs” pop-up window will appear, through which you can change the
import name if you want to (Figure A.4).

The example program should now be imported, and now you can compile and run it
(Figure A.5).

H - o x
B mived Compier Baamp 3
« | @ Secure | hitpsy/developer.mbed.ong/compiler/#navExample_5_1/main.cpp: @
fExample_5_1/main.cpp
Fmew ~ Fyimpot | L] sove L Swe sl | (] Compile v | @ Commit v () Revisien
Program Workspace <
& B My programs
E[D Example_s_1 pigitalin dinitn)
) Gettngstarted i | sigitalin din(oT);
@ m irz madnl} |
L) Makefte while (2} [
[&] mbed_corah printf (“td\nic®, din.read())s
{5 mbed wait(0.25);
]
10}
< 3
o ar 5.1 C) Vebose | Emor:0 | Wamings:0 | Inks:0
Description Esvor Number | Resoute In Felder Location
< > | Compile Output | Find Resuls | Notifications -
Ready. 1 ol n | ms L]

Figure A.5 The imported example program.

283

285

B

HiveMQ MQTT Broker

HiveMQ MQTT Broker is a very popular MQTT software that provides Websocket,
security, and Socket services. We will use HiveMQ as an example to illustrate how to
install and configure a MQTT broker software.

Just go to the HiveMQ website, as shown in Figure B.1, and follow the instructions to
download the software and unzipped to any folder, as shown in Figure B.2. In this case,
it is downloaded and unzipped to “This PC > Downloads” folder. Go to the HiveMQ’s
“bin” directory and double-click “run” file to run HiveMQ MQTT broker software. If
everything is fine, you will see the software screen outputs like Figure B.3. As we did
not purchase any licenses, it is limited to 25 connections.

- o x
@) Cotting Starnd | Hvell %
LI I O v hiverma com/resourcesgetting started | ol
HlvE MQ MOTT HIVEMQ RESQURCES EXTENSIONS SERVICES PRICING BLOG COMPANY CONTACT
ENTERPRISE MOTT BROCER

HiveMQ Documentation

See documnentation

Pre-Installation requirements Need help?
Hardware: "

See our senvices

Linux/Unix/BSD/Mac OS5 X
Unpack: -

Figure B.1 The HiveMQ MQTT broker website.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

286 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed™

M Application Tools ~ bin —
Home = Share View Manage)

& cut m - | Open ~ [HH selectan
% Copy path £7) Easy access - Edit
Capy Copy es
& hnv > & History
ThisPC > Downloads 5 MQTT » hivemq-322 > bin

& Google Drive A Name Type
Camera init-seript 20/0172017 16:34
FingerprintCard diagnostics 20/01/2017 16:34 4
sample-configuration diagnostics.sh
WileyBook-mbed (£ hivemq 797

run 4
@ OneDrive nsh
Documents stateful-cluster 4
Music stateful-clustersh
Pictures windows-service 2 2 4
Public
I This PC

1B Desktop

5| Documents

& Downloads

v
Sitems 1item selected 2.08KB [E=

Figure B.2 The HiveMQ MQTT broker software folder.

BN C:AWINDOWS\system32\cmd.exe

WARNING

HiveMQ needs more runtime privi
please run a n as admin. (r i "Run as adm: strator”

HIVEMQ_HOME :

OPTS: -XX:+HeapDumpOnOutOfMemor:
net.preferIPv4Stac o

Reporting Plugin - v3.0.9

INFO
INFO Startir n ©.8.8.8 and port 1
INFO Started n n a ©.8.8.8 and on port

restricted to 25 «

Figure B.3 The HiveMQ MQTT broker software screen outputs.

HiveMQ MQTT software builds on Java, so if you have not got the Java development
kit software installed on your computer, you will need to download and install Java JDK
(not JRE) software from its Oracle website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

B HiveMQ MQTT Broker | 287

To test the HiveMQ MQTT broker, you will need MQTT client software. Eclipse
Paho is one of the most popular MQTT client software options. To use it, just go to the
Eclipse Paho website and follow the instructions to download and install the software,
as shown in Figure B.4.

< | @ Secure | hitps:/lechpsecry | i

Community =

Downloads

MQTT Eclipse Plugin

~ - TTR— FIrroy ' Y

Figure B.4 The Eclipse Paho website (top) and the corresponding download page (bottom).

288 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed"™

4 Eclipse Paho MQTT Utility - o X
File Help

+
] Connections = 0| & connection =0

connection] -
= @ marT | % Options|

Connection 2] History | 5] Last Message

Server URI | tcp://localhost:1883

= Event Topic Message QoS Retai.. Time

ClientID | paho-1575718466431 Commected 2017-32.23 083
Status Connected Subscribed PerryTest o 2017-02-23 08:3.
Published PernyTest ddddd o No 2017-02-23 083

Connect Disconnect Received PernyTest ddddd o No 2017-02-23 083

Subscription

+ R 5

Topic Qo§
PerryTest 0- At Most Once

Subscribe Unsubseribe
Publication
Topic | PermyTest |
Qos 0-AtMost Once | [JRetained []Hex
ddddd

Message

File... Publish

Figure B.5 The Eclipse Paho MQTT client software outputs.

Figure B.5 shows the output of Eclipse Paho MQTT client software. As you can see, you
should be able to connect to the MQTT broker (tcp://localhost:1883), subscribe to a topic,
in this case, called “Perry Test,” specify the QoS level (0, 1, or 2), and publish the message.

You can also install several plugins to make the HiveMQ software more interesting.
As shown in Figure B.6, from the “Extensions” menu, such as “Security Plugins” and

@ Gettng Surted |Hawllt X

€ 3 ¢ o ET————

@ HIVEMQ MQTT HIVEMQ RESOURCES EX NS SERVICES PRICING BLOG COMPANY CONTACT

ANTURMRISE MOTT BROKIR

Enterprise Integrations Security Plugins Off-the-shelf Pluging
g .\ < p o By
—
o 4 | Monitoring Plugins * ﬂ
o Monit . f busir 1

&5 and howy 1 benefit frodr Management Plugins

Linux/Unix/BSD/Mac OS X

Figure B.6 The HiveMQ MQTT broker software plugins.

B HiveMQ MQTT Broker

= D o cuf <+ B x !_Il 3 New item = \ﬂ (£ open ~ HH selectall

w2 Copy path 7] Easy access + Select none
Copy Paste - Move Copy Delete Rename New Properties
[7] Paste shorteut o+ s o =

EHistory 5T invert selection

« “ 4 | » ThisPC » Downloads » MQTT » hivemg-322 » plugins

FingerprintCard
sample-configuration

WileyBook-mbed

fi. OneDrive
Documents

Music

Bitems 1item selected 744 KB

I < | plugins - O X
Hame Share Ve
‘ ;

v| @] | Search plugins »
S Quick access "~ Name Date modified Type Size
I Deskiop [eredentials.properties PROPERTIES File
3 Downloads [fileAuthConfiguration.properties PROPERTIES File
2 Documents [£] file-authentication-plugin-3.1.0 Executable Jer File
——— £ hivemg-jrnx-metrics-plugin-3.1.0 Executable Jar File
=
£ jum-metrics-plugin-3.1.0 Executable Jar File

Projects &) mqtt-message-log-3.0.0 Executable Jar File
£ Google Drive

Camera

Figure B.7 The HiveMQ MQTT broker software plugins folder.

“MQTT Message Log” (inside the Monitoring Plugins). Just download and unzip the

corresponding files to HiveMQ software’s plugin folder, as shown in Figure B.7.

To implement security plugins, you need to modify the file “credentials.properties” in
the plugins folder, as shown in Figure B.8. In this example, we added a new user called

“perry” and password is “1111”

Alternatively, you can also use the “file-authentication-plugin-utility-1.1.jar” program
in the plugins folder to manually add, configure, list, and remove users, as shown in
Figure B.9. Just open the command prompt terminal program and from the plugins

folder, run the following Java command:
java -jar utility/file-authentication-plugin-utility-1.1.jar

Qf’ C:\Uzers\Perng\ Downloads\MOTT\file-authentication-3.1.0-distribution\sample-co... - O x
Eile Edit 5Search Miew Encoding Language Settings Macro Bun Plugins Window 2 X
o B =] QLEMNEJ |§J |ﬂbﬂ| 1 '3|'—"‘I.C_!.|E_+' il

[=] credentials properties 3 ‘

hivemg-userl = userl
hivemg-user2 userz
hivemg-user3 = userd
perry = 1111

[™
I

[4)]

length: 76 lir Ln:4 Col:13 Sel: 121 UNIX UTF-8 INS

Figure B.8 Modification of the “credentials.properties”file.

289

™

290 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

BN HiveMQ FileAuth Plugin Shell 1.1 - a X

--file fileA

Figure B.9 User management using file-authentication-plugin-utility-1.1.jar program.

To make the changes take effect, you need to re-run the HiveQM MQTT broker soft-
ware, as we did before, shown in Figures B.2 and B.3.

Now, if you go back to the Eclipse Paho MQTT client software as shown Figure B.5,
you will get an error message when you are trying to connect the HiveMQ MQTT
broker. To get authenticated, from the “Options” tab in Paho software, tick the “Enable
Login” checkbox and type in the username (perry) and password (1111). Go back to the
“MQTT” tab; you should now be able to connect the broker and publish messages.

The “MQTT Message Log” plugin logs all the activities, users, and messages in a log
file under the HiveMQ “log” sub-folder.

HiveMQ software can also provide WebSocket services. To activate the WebSocket
service, go to the HiveMQ software folder, go to “conf” -> “examples” -> “configuration”
sub-folder (Figure B.10), copy the file called “config-sample-mqtt-and-websockets.xml,’
paste it back to the “conf” folder, and rename it to “config.xml” Figure B.11 shows the
content of the file, where WebSocket is provided on port 8000.

The “config.xml” file is the main configuration file for the HiveMQ software. If you
want to keep the original “config.xml” file, you should copy it to somewhere else, or
rename it first.

B HiveMQ MQTT Broker

configuration

' : -2
Home Share Vie
. - :
ly = 4 cut B x iﬁ T New item - li-l 23 open - [selectanl
d w Copy path « 1 | Easy access ~ A Edit Select none
c Copy Paste _ Move Copy Delete Rename New Properties
El Paste shortcut to~ to~ - folder - & History EFmvertselection
“— v 4 <« MOTT » hivemg-3.22 » conf » examples » configuration » v O Search configuration F=)
~
Quick access - MName Date modified Type Size
[Desktop cluster File folder
J Downloads other File folder
5] Documents tls File folder
= config-sample-mqtt XML Document
&= Pictures
2] config-sample-mqtt-and-websockets XML Document
Projects |2 config-sample-websockets 20/01/2017 16:34 XML Document
L. Google Drive
FingerprintCard
plugins
sample-configuration
WileyBook-mbed
¢ OneDrive
Documents
Music
Pictures
Public
[This PC
[Desktop
|=|] Documents
; Downloads
J') Music
&= Pictures
B Videos Y =
Gitems 1 itemn selected 1.05 KB =
Figure B.10 The “config-sample-mqtt-and-websockets.xml”file in the “conf/examples/configuration”
sub-folder.
Re-run the HiveQM MQTT broker software. It should now have the WebSocket ser-

vice enabled, at port 8000 (Figure B.12).

To test the WebSocket service, you can use the HiveMQ WebSocket online client
page (Figure B.13). You should be able to connect to the local host WebSocket service
and send WebSocket messages. You can also view the WebSocket activities from the

HiveQM terminal window, as shown in Figure B.14.
Further Information about HiveMQ MQTT:

http://www.hivemq.com/resources/getting-started/

http://www.hivemq.com/blog/hivemq-mgqtt-websockets-support-message-log-plugin-2-min

http://www.hivemq.com/plugin/file-authentication/
http://www.hivemq.com/demos/websocket-client/

291

http://www.hivemq.com/resources/getting-started/
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/plugin/file-authentication/
http://www.hivemq.com/demos/websocket-client/

292 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed"™

(& C\Users\Pernd\Downloads\MQTT\hivemg-3.2.2\conficanfigaml - Notepad++ - O X
Eile Edit Search View Encoding Language Settings Macro Run Plugins Window 2 X
cHHRRGE| iak|ioc R as|BE(ISTEDEA
Eacoﬁmxmlﬂll
1 [c?xml version="1.0"2>
2 <hivemg =mlns:xzi="http://www.w3.org/2001 /¥MLSchema—instance"
£ =21 :nolamespaceSchemalocation="hivemg-config.xsd">
4
5 <listeners>
& = <tcp-listener:>
7 <port>»1883<,/port:>
i3 <bind-addres=s>0.0.0.0</bind-address>
] - </tcp-listener:>
i0 [H <websocket-listener>
11 <port»8000<,/port>
12 <bind-addre=ss>0.0.0.0</bind-address>
13 <path»/mgtt</path>
14 [H <subprotocols>
15 <subprotocol>mgttv3. 1</ subprotocols
16 F </=subprotocolss>
17 <allow-extensions>troe</allow-extensions>
18 F </websocket-listener>
19 F <flisteners>
20 H <mgtt>
21 <max-client-id-length>65535</max-client—-id-length>
22 <retry-interval>10«</retry-interval>
23 = </mgtt>
24 [H <throttling>
25 <max-connections>-1</max-connections>
26 <max-message-size>268435456</max-message-size>
27 <outgoing-limit>0</outgoing-limits>
28 <incoming-limit>0</incoming-limits>
29 - </throttling>
30 H <general>
31 <update-check-enabled>true</update-check-enabled>
32 F </general>
2IE
34 L« /hivengs
length: 1078 Ln:1 Col:1 Sel:0]0 UMIX UTF-8 IMS

Figure B.11 The content of the “config.xml”file with WebSocket service (port 8000).

B HiveMQ MQTT Broker | 293

B C:AWINDOWS\system32\cmd.exe - [m] X

Figure B.12 The HiveMQ MQTT broker software screen outputs with WebSocket service enabled at
port 8000.

294 | Designing Embedded Systems

™

and the Internet of Things (loT) with the ARM® Mbed

bsocket Client X

& M

C | ® Notsecure | www.hivema.com

) HIVEMQ

- ENTERPRISE MQTT BROKER

Websockets Client Showcase

beg

Connection

Host

localhost

Usemame

Last-Will Topic

Last-Will Messsage

Publish

Topic

testtopic/1

Message

Hello World!

@ connected I

Port ClientiD
8000 clientid-fllgwvufin

Password Keep Alive SSL Clean Session

60 x

Last-Will Qos Last-Will Retain
0

»

A Subscriptions

QoS Retain

Figure B.13 The HiveMQ WebSocket online client.

BE¥ CAWINDOWS\system32\cmd.exe

WARNING

HiveMQ needs more runtime pr:

please run again as admin.

: +HeapDumpONnOutOfMemoryError -XX:HeapDumpPath=" s\ 3 heap-dump. hpry
k

.preferIPvastac

INFO
INFO
INFO
INFO

NI

7 INFO
0

HERNN NN NN NN

(right click, select 'Run as administrator

Downloads\MQTT\hivemq-

true -noverif

MQ Server
3.2.2

confi\logh

Loaded Plugin HiveMQ MQTT Mes.

Reporting started.
Starting TCP listener on address ©.8.8.8 and port 1883
Startin ocket listener on address @.8.e.@ and port
Started Listener on address ©.6.0.0 and on port 1883
Started Websocket Listener on address ©6.8.8 and on port 8608
St in 14976ms

ile found. Using evaluation licen restricted to 25 connections.
Client clientId-ffIgWvufin connected
ient clientId-ffIq fin sent a me p “testtopic/1”: "Hello World!™ (QoS: @

Figure B.14 The HiveMQ MQTT broker software screen outputs with WebSocket messages.

295

C

Node-RED on Raspberry Pi

Raspberry Pi is an excellent kit for learning. So if you have a one, you can also use
Node-RED using Raspberry Pi, as the latest Raspberry Pi operating system Raspbian
Jessie has Node-RED installed by default.

If you do not have the latest Raspberry Pi operating system, you can download it from
the following website, as shown in Figure C.1.

https://www.raspberrypi.org/downloads/

You can also follow the instructions to install Node-RED by yourself, if it has not been
installed.

https://howtonode.org/how-to-install-nodejs

B Raspbamy PiDowelcas: X

- | @ Secure | hitps)wwe.raspberryplong dov =

DOWNLOADS COMMUNITY HELP FORUMS EDUCATION q

DOWNLOADS

Rasphian is the Foundation's cfficial supported Operating System. Download it
here, or use NOOBS, our easy installer for Raspbian and more.

RASPBIAN

THIRD PARTY OPERATING SYSTEM IMAGES

Third party images are aleo available:

Elcies

UBUNTU MATE SNAPPY UBUNTU CORE WINDOWS 10 10T CORE OEMC -

Figure C.1 Raspberry Pi operating system download page.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

https://www.raspberrypi.org/downloads/
https://howtonode.org/how-to-install-nodejs

™

296 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

To install Node-RED, you need to install “Node.js” and “npm” packages first. From
the Raspberry Pi desktop, just open a terminal software and type the following
commands:

S sudo apt-get update
S sudo apt-get install nodejs
S sudo apt-get install npm

Once you have Node.js installed, just use the following commands to install and run
Node-RED:

S sudo npm install -g node-red
S node-red

When you are working with many devices, it is easier to access Raspberry Pi using
SSH or using a remote desktop, as this saves the hassle of having an extra monitor.

Raspberry Pi disabled the SSH by default. To enable it, go from main menu ->
“Preferences” -> “Raspberry Pi Configuration” A configuration window will appear,
and from the “Interfaces” tab, make sure SSH is enabled, as shown in Figure C.2. Now
you should be able to remote login to Raspberry Pi using SSH with any terminal soft-
ware such as, putty.exe, Tera Term, etc.

To connect to Raspberry Pi using a remote desktop, you will need to install “xrdp” and
“tightvncserver” packages first. To start from scratch, first remove the existing remote
desktop software, if there is any:

S sudo apt-get remove xrdp vnc4server tightvncserver

Then install “tightvncserver” and “xrdp” software,

S sudo apt-get install tightvncserver
S sudo apt-get install xrdp

Now you can use the Windows remote desktop to connect to Raspberry Pi using its
IP address. After typing in the username and password (default is pi and raspberry), you
should be able to connect to Raspberry Pi as shown in Figure C.3.

You can start the Node-RED service by selecting Raspberry main menu ->
“Programming” -> “Node-RED”. A Node-RED console window will appear to confirm
that Node-RED is running, as shown in Figure C.3.

Node-RED is running as a web service. To test Node-RED, open a web browser, and
type in “localhost:1880” as the URL. You will then see the Node-RED UI (user inter-
face) as in Figure C.4. On the left is a node palette, which contains a set of nodes,
divided into several categories, such as “input,” “output,” “functions,” “social,” “analy-
sis,” etc. On the right is an output pane, which contains “debug” and “info” tabs. In the
middle is flow canvas, where you can create your Node-RED programs. Each program
is called a flow, and the default name for your first program is called “Flow 1”. To cre-
ate a program is very easy; just drag in some nodes from the node palette, and wire
them up.

Let’s use a simple MQTT example program to illustrate how to program in Node-
RED. From node palette, drag in a “mqtt” node from the “input” category, and a “debug”

C Node-RED on Raspberry Pi | 297

System

Camers

<

Figure C.2 Raspberry Pi Configuration.

node from the “output” category, wire them up as shown in Figure C.4 (top). Double-
click the “mgqtt” node to entre the configuration information as shown in Figure C.4
(bottom). This will connect to the HiveMQ MQTT broker we did in the previous
appendix, running on your computer at port number 1883. The IP address is your
computer IP address. It will subscribe to the topic “PerryTest.” In this example, it will
pick up any messages published to the topic “PerryTest,” and display it on the “debug”

™

298 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

beiipComeion = 0 X |
. Remote Desktop
"»+ Connection

S 150.148.1,75 - Renete Desktog Cornessien o

<

Figure C.3 Raspberry Pi remote desktop.

tab on the right. Now, click the red “Deploy” button on the top right to activate your
program.

To test your program, we can use the same Eclipse Paho MQTT client software on
your computer, as we did in the previous appendix. In this example, it published a mes-
sage “tttttt” to the topic “PerryTest.” The message appeared both on the Eclipse Paho
MQTT client, Figure C.5 (top), and Node-RED program “debug” tab, Figure C.5
(bottom).

You can also publish messages to MQTT broker by adding the second flow to the
program. From the node palette, drag in an “injet” node from the “input” category, and
a “mgqtt” node from the “output” category, and wire them up as shown in Figure C.6.
Please note that the “inject” changed its name to “timestamp” when it is placed on the
flow canvas. This node will send out a time stamp message. Double-click the “mgqtt”
node and enter the configuration. Again, click the red “Deploy” button on the top right
to activate your program.

Now, each time you press the “timestamp” node, it will publish a time stamp message
to the topic “PerryTest,” and the first flow will receive the message, as shown in the
“debug” tab in Figure C.7.

C Node-RED on Raspberry Pi | 299

T 192.148.1.7 « Revte Sektop Conmection - = =

[} @E}__{I@!m:—::-um«solr | & Nocedien - chvomis. | _ - g

HNedeAED - Chromium
& Nede FED

>0 iocaliost

+ eustput
» hunction

» sockl

%) 151501 - Ramcte Deskiap Conrecion - o X

Y @@!” (&) B e RED comscie @' NodeRED - Chvomua |

TR

Hode-RED - Chromasm

Edit magt in node

watson 16T

outpat

function

soclal

Figure C.4 Node-RED user interface (top) and Configuration of the “mqtt” node (bottom).

You may also want to install “Palette Manager,” which will allow you to install new
modules. Following are commands:

S sudo apt-get update
S sudo apt-get install npm
S sudo npm 1 -g npm@2.x

™

300 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

¥t Eclipse Paho MQTT Utility - a X
File Help
+
[Z] Connections = O | El connectionl & = 8
connection1 5
= @ marT | & options
Connection =] History | [5] Last Message
Server URI | tp://localh
Event Topic Message QoS Retai.. Time
Client ID ho-15
en pane Connected 2017-02-23 13
Status Connected Subscribed PerryTest 0 2017-02-23 13:4.
Published PermyTest it 0 No 2017-02-23134.
Connect Disconnect Received PermyTest it 0 No 2017-02-23134..

Subscription

+ R &
Topic QoS
PerryTest 0- At Most Once
Subscribe Unsubscribe

Publication

Topic PerryTest |
53 0-AtMostOnce v | [JRetained [Hex

it
Message

File... Publish

% 152.162.1.79 - Remote Desktop Connection

‘8‘ @ ’.* @ NudeRED console G Node-RED - Chromiu.

Node-RED - Chromium
&= Node-RED

s & C D localhost:1880/# */B @ : *

a Flow 1 + || info debug

all flows L

(] inieat
= eyt g aiond g (3

\'j o . et n
e (e] o

@ connected

ik O
matt
hitp

tep

(

o
d e
[websocket
a

[wp

=

serial

Figure C.5 Eclipse Paho MQTT client (top) and Node-RED output (bottom).

After the installation, restart the Node-RED. Then from the top right corner menu,
you will see the item called “Manage Palette” (Figure C.8), from which you would be
able to install modules such as Node-RED Dashboard, as shown in Chapter 12,
section 12.5.3.

C Node-RED on Raspberry Pi | 301

Pede RED - Chromium

Pede RED - Chromium

Edit mapt ot vode

< »

Figure C.6 Add a second flow to the program (top) and the configuration of “mgqtt” output node
(bottom).

There are many interesting examples online, which you can try by importing them
using JSON (JavaScript Object Notation).

http://flows.nodered.org/
http://noderedguide.com/tag/example/
https://hub.jazz.net/project/sportshack/node-red-examples/overview

http://flows.nodered.org/
http://noderedguide.com/tag/example/
https://hub.jazz.net/project/sportshack/node-red-examples/overview

™

302 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

L T ——— D =
® @ DB % O Blrocencnconsole | nod=RED- chvomu
. - . Lo il I
E————rer——]
| /& nocoreD . &
€ o ccathost] ®
T
|
1 Flow 1 - debug

<

Figure C.8 The “Manage Palette” in the dropdown menu.

Further Information about Node-RED:

http://noderedguide.com/
http://nodered.org/docs/hardware/raspberrypi.html

http://noderedguide.com/
http://nodered.org/docs/hardware/raspberrypi.html

303

D

String and Array Operations

String and/or array operations have always been an issue for many programmers, so in
this appendix, we provide a list of example codes for commonly used string and array
operations.

Define Strings

char str[256] ;

strcpy (str,"hello world") ; //str = "hello world”;
or

char str[60] = “Hello World”;

or

char *str = “Hello World”;

Concatenate Strings (Merge Strings)

char str[80] = "hello ";

strcat (str,"world "); //merge “hello” and “world” into str
Sub-Strings

char *buff = "Hello World";

char* substr;
strncpy (substr, buff+7, 5); //begin index: 7 substring length: 5

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

™

304 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

String Length
char str[32] = "hello, world";
int n = strlen (str)

String to Float/Double (sscanf)

char *buff = "51.432";
double x;

sscanf (buff, "%f", &x);
printf ("$f\n\r",x) ;

String to Float/Double (atof)

#include <cstdlib>
void main ()

{

float x;
x = atof ("3.14");

Read Numbers from a String

#include <stdio.h>

int main ()

{

char sentence []="Tony 34 5.6";
char str [20]; int x; float y;

sscanf (sentence,"%$s %$*d %$f",str,&x,&y) ;
printf ("%$s %4 %f\n",str,x,y);

return 0;

D String and Array Operations

Combine Strings and Numbers

char buffer[256];

float x = 3.5;

int y =20;

n=sprintf (buffer, "%s %f %d4d", “Tom”, X, V);

Split String into Two

#include <string.h>

char *token;
char line[] = "Hello World";
char *search = " ";

// Token will point to "Hello".
token = strtok(line, search);

// Token will point to "World".
token = strtok (NULL, search);

Split String into Many

#include <stdio.h>
#include <string.h>

int main ()
{
char str[] ="- This, a sample string.";
char * pch;
printf ("Splitting string \"%s\" into tokens
pch = strtok (str," ,.-");
while (pch != NULL)
{
printf ("%s\n\r",pch);
pch = strtok (NULL, " ,.-");

}

return O;

:\n",str) ;

305

™

306 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Float to String

char buffer([50];
float x = 3.5;
n=sprintf (buffer, "%f", x);

Strings Array

char * const str[] = {
"Hello",
"World",

}i

printf ("%s\t%s\n\r",str[0],str([1]);

Strings to Uppercase
#include<string.h>

int main() {
char *str =
strupr (str) ;
printf ("$s\n\r", str);

"Hello World";

return (0) ;

}

#include <stdio.h>
#include <ctype.h>

int main()

{

int i = 0;
char c;
char str[] = "Hello World";

while (str[i])

{
str[i] =toupper (str[i]) ;
i4+;

}

return(0) ;

Strings to Lowercase
#include <string.h>
#include <ctype.h>

char *strlwr (char *str)

{

unsigned char *p = (unsigned char *)str;

while (*p) {
*p = tolower ((unsigned char) *p) ;
pP++;

}

return str;

Strings to Lowercase 2
#include <stdio.h>
#include <ctype.h>

int main()

{

int i = 0;
char c;
char str[] = "Hello World";

while(str[i])

{

str[i]=tolower (str[i]) ;
i4+;

}

return(0) ;

Compare Two Strings
char *cl = "hello";
char c2 [] = "hello";

if (strecmp(cl,c2)==0){
//do something
}

D String and Array Operations

307

™

308 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Compare Two Characters
#include "mbed.h"

Serial pc(USBTX, USBRX); // tx, rx

int main() {
char ¢ = pc.getc();
if(c == 'a') {
//do something

Integer Array

int agel[4];

age[0]=14;
age[1]1=13;
age[2]=15;
age[3]=16;

or
int arr [5] = {1,2,3,4,5};

for (int i=0; i<5;i++){
printf ("%d", arr([i]);

Integer 2D Array

int age([4] [3];

age[0] [0]=14;
age[1] [0]=13;
age[2] [0]=15;
age[3] [0]=16;

age[0] [1]=14;
age[1] [1]1=13;
age[2] [1]1=15;
age[3] [1]=16;

age[0] [2]=14;
age[1] [2]=13;
age[2] [2]=15;
age [3] [2]=16;

D String and Array Operations | 309

or

int ages [3][4] = {
{1, 2, 3, 4},
{s, 6, 7, 8},
{9, 10, 11, 12}

Float Array

#include <stdio.h>

int main ()
float data[4096];
for (int 1=0;1<4096;1++)

{ data[i]=1*0.001;
printf ("$f\n\r", datalil);
}
return O;
}
Float 2D Array

#include <stdio.h>

int main()
float data[4096] [3];
for (int 1=0;1<4096;1++)
{
data[i] [0]=1*0.001;
data[i] [1]=sin(i*0.001) ;
data[i] [2]=cos (1*0.001) ;
printf ("%$10.2f \t %10.2f \t %10.2f \n\r", datal[i] [0],
datal[i] [1], datali]l [2]);

}

return O;

311

E

Useful Online Resources

™

Arm® Mbed

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture

mbed YouTube Playlist
https://www.youtube.com/channel/UCNcxd73dSceKtU77XWMOg8A /playlists

C/C++ Reference

http://www.cplusplus.com/reference/
http://en.cppreference.com/w/
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

C/C++ Tutorial

http://www.cplusplus.com/doc/tutorial/
https://www.tutorialspoint.com/cplusplus/
http://www.cprogramming.com/begin.html

WebSocket Tutorial

http://tutorialspoint.com/websockets/index.htm
https://developer.mbed.org/cookbook/Websockets-Server
https://www.fullstackpython.com/websockets.html

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture
https://www.youtube.com/channel/UCNcxd73dSceKtU77XWMOg8A/playlists
http://www.cplusplus.com/reference/
http://en.cppreference.com/w/
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
http://www.cplusplus.com/doc/tutorial/
https://www.tutorialspoint.com/cplusplus/
http://www.cprogramming.com/begin.html
http://tutorialspoint.com/websockets/index.htm
https://developer.mbed.org/cookbook/Websockets-Server
https://www.fullstackpython.com/websockets.html

™

312 | Designing Embedded Systems and the Internet of Things (loT) with the ARM® Mbed

Python Tutorial

https://docs.python.org/3/tutorial/
https://www.tutorialspoint.com/python/

Java Tutorial

https://docs.oracle.com/javase/tutorial/
http://www.javatpoint.com/java-tutorial
http://javabeginnerstutorial.com/core-java/

MQTT Tutorial

http://mqtt.org/documentation
http://www.hivemq.com/blog/how-to-get-started-with-mqtt
http://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/
https://learn.adafruit.com/mgqtt-adafruit-io-and-you/overview

Node-RED Tutorial

https://nodered.org/docs/getting-started/first-flow

http://noderedguide.com/

https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-
using-node-red/

JSON Tutorial

https://www.w3schools.com/js/js_json_intro.asp
http://www.tutorialspoint.com/json/
https://www.javatpoint.com/json-tutorial

Node.js Tutorial

https://nodejs.org/en/
http://www.tutorialspoint.com/nodejs/
http://www.nodebeginner.org/

https://docs.python.org/3/tutorial/
https://www.tutorialspoint.com/python/
https://docs.oracle.com/javase/tutorial/
http://www.javatpoint.com/java-tutorial
http://javabeginnerstutorial.com/core-java/
http://mqtt.org/documentation
http://www.hivemq.com/blog/how-to-get-started-with-mqtt
http://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/
https://learn.adafruit.com/mqtt-adafruit-io-and-you/overview
https://nodered.org/docs/getting-started/first-flow
http://noderedguide.com
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://www.w3schools.com/js/js_json_intro.asp
http://www.tutorialspoint.com/json/
https://www.javatpoint.com/json-tutorial
https://nodejs.org/en/
http://www.tutorialspoint.com/nodejs/
http://www.nodebeginner.org

Index

a

Accelerometer 16,17, 18, 19, 88-94, 96,
101, 183, 205, 211, 242

Acorn Computers 8

Actuators 3,28, 31, 45

Address Bus 5

Anolog to Digital Converter (ADC) 7,12,
14-20, 31

Application programming interface
(API) 45,67,81, 86, 88,98, 101,
106, 108, 110, 111, 113, 119, 134,
171, 179, 242

Arduino 17, 20, 21, 41, 45, 53, 90, 91, 94,
104, 139, 140, 143, 145, 146, 148,
149, 151, 152, 155, 156, 159, 161,
162, 164, 168, 169, 170, 171,
173-177,272

Arithmetic logic unit (ALU) 5

ARM 3,6, 8-18, 21, 24, 25, 40, 41, 45,
47, 49, 50, 51, 53, 54, 58, 62, 69,
115, 124, 129, 135, 137, 149,
150-154, 156-158, 160-162,
163-166, 170, 173, 181, 192, 196,
202, 203, 205-207, 214, 215, 219,
224, 228, 230, 237, 242, 261, 263,
271,277

Audio jack 13

AWS IoT 42,43

b

Bit 7,9, 10, 11, 12, 14-20, 24, 33, 34, 52,
79-82, 103, 273

Bluetooth Low Energy (BLE)

Bootloader 67,69

17,24, 32

9
CAN (controller area network)
Carriots 45
C/C++ 13,15,16,20, 58, 311
Central processing unit (CPU) 4
Cloud 10,17,21, 25, 26, 37, 4144, 242,
263,277
Collaborations 67, 196, 201, 202
Command line interface (CLI) 49
Communication 53,71, 90, 103, 106—109,
111, 115,119, 124, 128, 134, 135
Complex instruction set computing (CISC) 6
Constrained Application Protocol
(CoAP) 33,38
Control Bus 5,6
Cortex-A 8,9
Cortex-M 8-12, 14, 15,17, 18
Cortex-R 8,9
Counter 4,7,8,111,112

4,19,111

d

DataBus 5,6

Device-to-device (D2D) 23

Digitalln 12, 14, 71, 72, 77-81, 166, 207, 226

DigitalOut 12, 14, 55, 59, 61, 74-78, 81,
101, 107, 112, 167, 226, 240

Digital Signal Processing (DSP) 10, 18,
137,139, 142, 147, 160, 162, 163

Digital to Analog Converter (DAC) 7

e
Eclipse IoT 42
EEPROM 7

Embedded Systems 3,4, 7, 8, 23, 31, 106

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed"™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandloTwitharmmbed

313

314

Index

Energy 10, 16,17, 24,27, 28, 31, 32, 37, 38

Environment 10, 28, 29, 45, 49, 51, 202

Ethernet 4,12, 14,17-21, 49, 111,
115-129, 133, 135,172,177, 179,
203, 205, 206, 214, 215-217,
219-222, 224-226, 230, 234, 236,
237, 242, 243, 247, 257, 271, 277

f
Filter
band-pass filter
band-stop filter
high-pass filter
156, 164
low-pass filter 137-140, 142, 145, 148,
152, 156, 158, 159, 164, 275, 276
notch-filter 146, 164
Firmware 67, 68,70
Flash 7,12-20, 58, 60, 61, 75, 99, 165, 261
FRDM-K64F 17, 20, 21, 41, 49, 51, 53-57,
61, 62, 65, 66—68, 71-76, 78, 81-83,
85, 86, 88-90, 96-98, 100, 101, 103,
106, 107, 109, 115, 119, 131, 132, 163,
205-213, 236-238, 242, 271, 274

143-145, 164
146-148, 164
137, 141, 142, 152, 154,

g
GE Predix 44

Google Cloud IoT 44
GPIO 12,15,17,57

h

Healthcare 28,215

Heating, ventilation and air conditioning
(HVAC) 27

HiveMQ MQTT Broker
293, 294, 297, 312

Home 8,11, 25-27, 34, 38, 39, 54-56, 62,
196-198, 246, 248

HTTP 33, 35-38, 42, 25,119, 120, 122,
123,128, 133, 134, 178, 217, 219,
220, 234-236

38,279, 285-291,

i

IBM Bluemix 17, 39, 41, 242, 245, 246,
248, 252, 253, 257, 260, 263, 277

IBM Ethernet IoT Starter Kit 17, 18, 40,
49, 203, 205-215, 218, 230, 242, 247,
263, 277

IBM Watson 25, 39, 41, 242, 245, 252,
261, 263, 277
12C (Inter-Integrated Circuit)
serial data acquisition (SDA)
211,212
serial clock line (SCL)
212
IEEE 19,33-35
industrial, scientific, and medical
(ISM) 32,34
Industry 4.0 28,29
Inputs 3,19, 20, 47, 66,71, 73,77,78, 81,
86, 101, 123, 207, 213, 219, 229, 271,
273,276, 277
Instruction set architecture (ISA) 6
Integrated circuit (IC) 4
Internet of things (IoT) 1, 8,17, 18, 23-29
Interrupt 4, 7, 8,100, 101, 111, 168, 169
IoT Platforms
AWS IoT 42,43
Carriots 45
Eclipse IoT 42
GE Predix 44
Google Cloud IoT 44
IBM Bluemix 17, 39, 41, 242, 245, 246,
248, 252, 253, 257, 260, 263, 277
IBM Watson 25, 39, 41, 242, 245, 252,
261, 263, 277
macchina 45
Microsoft Azure 42,43
ThingWorx 44
Xively 44
IP 17, 24, 33, 34, 115, 116, 120-126, 128,
129, 131, 133, 134, 178, 179, 217,
218, 227, 229, 234, 236, 243, 296, 297
IP address 17,24, 115, 116, 120-126, 128,
129, 131, 133, 134, 178, 179, 217,
218, 227, 229, 234, 236, 243, 296, 297
IPv6 33,34

31,108
108-110,

108-110, 211,

J

Java 44,129, 218, 219, 223, 224, 228, 230,
286, 289, 312

JavaScript 16, 39, 41, 42, 44, 45, 301

Joystick 13, 18, 205, 207, 208, 212, 214, 243

JSON (JavaScript Object Notation) 39, 45,
261, 264, 301, 312

k
Kit 13,17,18, 40, 41, 49, 203, 205-214,
215, 218, 219, 230, 237, 242, 243,

247, 263, 277, 286, 295

I

LCD 7,13,18,106,205-209, 211, 212,

214-216, 218, 243

7,13, 17-20, 33, 53-61, 66, 69,

74-76,79-81, 86, 87, 100, 101, 112,

165, 167, 205, 211, 212, 214, 224,

226, 240-242, 261

Library 20, 44, 88, 90, 96, 97, 116, 117, 118,
124, 126, 128, 131, 137, 139, 149, 160,
163,172,173, 181, 182, 184-186,
188-190, 201, 205, 211, 212, 215,
216, 219, 221, 225, 234, 237, 273

LiFi 33, 34, 35,45

LM75B Temperature Sensor
211, 212, 215, 216

Local File System 98, 99, 100, 101, 272

LoRa 34, 35,45

6LowPAN 24, 33, 34, 35, 45

LPC11U2 14, 15,67,99,273

LPC1768 11-14,21, 65, 67, 78-80, 8688,
96, 98-101, 106-108, 110, 120, 121,
122, 132-134, 160, 162, 205-213,
235, 271-274, 276, 277

LED

109, 205,

m

Macchina 45

Machine-to-machine (M2M) 23, 37, 38

Magnetometer 16, 17, 19, 88, 93, 95, 96,
101, 183

Manufacture 28, 231

Memory 3-7,9, 10, 18, 53, 58, 99, 100

MEMS (micro-electromechanical
systems) 23

Micro:bit 15-17

Microcontroller (MCU) 3-11, 14, 15, 21,
23, 24,71, 86, 97, 99, 100, 103, 108,
111,113

Microprocessor (MPU) 4, 5,21, 24

Microsoft Azure 42,43

MQTT 33,35, 37, 38, 42, 44, 45, 135,
222-224, 243, 279, 285-294,
296-301, 312

Index

n

Near-Field communication (NFC) 24, 32

Node-RED 39, 40, 45, 247, 248, 257, 261,
263, 264, 266-269, 295-302, 312

NVRAM 7

Nyquist frequency 137,138

Nyquist-Shannon sampling theorem 7

o

outputs 3,7,17, 20,47, 66,71-74,77,78,
81, 82, 84, 86, 91, 94, 101, 155, 187,
234, 252, 261, 266, 272, 274, 277,
285, 286, 288, 293, 294

p
Parallel inputs and outputs 7

Peripherals 4-6, 17, 19, 20
PID Controller 160, 163
Platform 10,11, 13-17, 20, 21, 25, 39,
41-45, 54, 57, 61, 62, 65, 70, 85, 98,
214, 242-245, 252, 253, 263, 312
Potentiometers 13, 18, 205, 208, 209, 213,
214
Processor
311
13, 15, 20, 39, 47, 51, 54, 56, 60,
64,70, 71, 74, 80, 82, 86, 88, 90, 96,
100, 103, 107-110, 181, 183, 192,
202, 203, 215, 216, 224, 225,
230-233, 237, 245, 271, 277
Protocols 31, 35, 42, 45
Pulse Width Modulation (PWM) 12,13,
17-20, 66, 86—88, 101, 160-162,
166, 209, 210, 212, 213, 231
Python 16,41, 42, 44,129, 131, 311, 312

3,5,8-10, 14, 15,17, 21, 108,

Project

q
Quad 19

Queuing 42,222

r

Radio-Frequency Identification (RFID) 23,
24, 32, 35,237-242, 277

RAM 6,7,12,14-19

Raspberry Pi 39, 45, 279, 295-298

Real-Time 3,8,9, 19, 36, 38,41, 47, 165,
173, 271, 275

Real-Time Signal Processing 271, 275

315

316

Index

Reduced instruction set computing
(RISC) 6,8

Reset 8,10, 53,57, 67, 239, 240

RGBLED 13, 18-20, 56, 74, 79, 205, 211,
212,214

RJ45 14,20

ROM 6,7

S

SD card 20, 96-98, 101, 106, 183, 272

Sensors 3,7,17,23, 24, 26-28, 31, 33, 41,

45, 82, 96

4,7,17, 20, 31, 50-53, 66, 71, 77,

80, 90, 91, 93-95, 97, 99, 103-108,

111, 113, 132, 133, 139, 140, 143,

145, 146, 148, 149, 151, 152, 155,

156, 159, 161, 162, 164, 166,

168-171, 173-175, 177, 185, 186,

207,272, 308

Serial Input and Output 7

Serial Peripheral Interface (SPI) 12, 14, 15,
17,19, 20, 31, 66, 97, 106—-108, 110,
113, 239, 240

Servo motor 13, 88, 230, 231, 234-236

Speaker 7,13, 18, 205, 209, 210, 214

System-on-a-chip (SoC) 4

Serial

t

TCP/IP 33

TCP (transmission control protocol) 33,
35, 36, 38, 120, 121, 122, 124-126,
134, 135,177, 178, 216-219, 225,
226, 235

Temperature Sensor 3, 13, 18, 31, 82, 83,
128, 205, 211, 212, 214, 215, 242

ThingWorx 44

Transport 28, 37,222

u

UART (universal asynchronous receiver/
transmitter) 7,12, 15,19, 20, 31

UDP (user datagram protocol) 33, 38, 124,
126, 127, 135, 227

Unidirectional 6

Update 28, 192, 194, 195, 200, 201, 202,

219, 275, 296, 299

4,10, 12-15, 17, 19, 20, 50, 53, 57,

67,93, 95,99, 103-105, 111, 132,

133, 161, 162, 166, 215, 224, 230,

237,242,271, 308

USB

"4
Version Control 192, 196, 202
Visible Light Communications (VLC) 33

w

Watchdog 8

Web 10, 17, 35, 36, 39, 44, 45, 49, 50, 53, 54,
57,62, 63,67, 68,119, 120, 122, 123,
128, 135,173,177, 179, 215, 271-220,
230-232, 234236, 263, 296

WebSocket 33, 35-40, 42, 44, 45, 128-131,
134, 135, 285, 290-292, 294, 311

WiFi 4, 14, 18, 24, 31, 33, 34, 35, 131-135

X

Xbee 14,18

Xively 44

XML (Extensible Markup Language) 38, 45

XMPP (Extensible Messaging and Presence
Protocol) 38

V4
ZigBee 14,18,24, 34,35
Z-Wave 24, 34,35

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover Page
	Half Title Page
	Title Page
	Copyright Page
	Dedication Page
	Contents
	About the Author
	Preface
	Authors Acknowledgments
	About the companion website
	Part I Introduction to Arm® Mbed™ and IoT
	Chapter 1 Introduction to Arm® Mbed™
	1.1 What is an Embedded System?
	1.2 Microcontrollers and Microprocessors
	1.3 ARM® Processor Architecture
	1.4 The Arm® Mbed™ Systems
	1.4.1 NXP LPC1768
	1.4.2 NXP LPC11U24
	1.4.3 BBC Micro:bit
	1.4.4 The Arm® Mbed™ Ethernet Internet of Things (IoT) Starter Kit

	1.5 Summary
	1.6 Chapter Review Questions

	Chapter 2 Introduction to the Internet of Things (IoT)
	2.1 What is the Internet of Things (IoT)?
	2.2 How Does IoT Work?
	2.3 How Will IoT Change Our Lives?
	2.4 Potential IoT Applications
	2.4.1 Home
	2.4.2 Healthcare
	2.4.3 Transport
	2.4.4 Energy
	2.4.5 Manufacture
	2.4.6 Environment

	2.5 Summary
	2.6 Chapter Review Questions

	Chapter 3 IoT Enabling Technologies
	3.1 Sensors and Actuators
	3.2 Communications
	3.2.1 RFID and NFC (Near‐Field Communication)
	3.2.2 Bluetooth Low Energy (BLE)
	3.2.3 LiFi
	3.2.4 6LowPAN
	3.2.5 ZigBee
	3.2.6 Z‐Wave
	3.2.7 LoRa

	3.3 Protocols
	3.3.1 HTTP
	3.3.2 WebSocket
	3.3.3 MQTT
	3.3.4 CoAP
	3.3.5 XMPP

	3.4 Node‐RED
	3.5 Platforms
	3.5.1 IBM Watson IoT—Bluemix (http://www.ibm.com/internet‐of‐things/)
	3.5.2 Eclipse IoT (https://iot.eclipse.org/)
	3.5.3 AWS IoT (https://aws.amazon.com/iot/)
	3.5.4 Microsoft Azure IoT Suite (https://azure.microsoft.com/en‐us/suites/iot‐suite/)
	3.5.5 Google Cloud IoT (https://cloud.google.com/solutions/iot/)
	3.5.6 ThingWorx (https://www.thingworx.com/)
	3.5.7 GE Predix (https://www.predix.com/)
	3.5.8 Xively (https://www.xively.com/)
	3.5.9 macchina.io (https://macchina.io/)
	3.5.10 Carriots (https://www.carriots.com/)

	3.6 Summary
	3.7 Chapter Review Questions

	Part II Arm® Mbed™ Development
	Chapter 4 Getting Started with Arm® Mbed™
	4.1 Introduction
	4.2 Hardware and Software Required
	4.2.1 Hardware
	4.2.2 Software

	4.3 Your First Program: Blinky LED
	4.3.1 Connect the Mbed to a PC
	4.3.2 Click “mbed.htm” to Log In
	4.3.3 Add the FRDM‐K64F Platform to Your Compiler
	4.3.4 Import an Existing Program
	4.3.5 Compile, Download, and Run Your Program
	4.3.6 What Next?

	4.4 Create Your Own Program
	4.5 C/C++ Programming Language
	4.6 Functions and Modular Programming
	4.7 Manage Platforms
	4.8 Clone Your Program
	4.9 Search and Replace
	4.10 Compile Your Program for Multiple Platforms
	4.11 Delete Your Program
	4.12 Disaster Recovery Procedure
	4.13 Upgrade Firmware
	4.14 Help
	4.15 Summary

	Chapter 5 Inputs and Outputs
	5.1 Digital Inputs and Outputs
	5.1.1 Digital Inputs
	5.1.2 Digital Outputs
	5.1.3 BusIn, BusOut, and BusInOut

	5.2 Analog Inputs and Outputs
	5.2.1 Analog Inputs
	5.2.2 Analog Outputs

	5.3 Pulse Width Modulation (PWM)
	5.4 Accelerometer and Magnetometer
	5.5 SD Card
	5.6 Local File System (LPC1768)
	5.7 Interrupts
	5.8 Summary

	Chapter 6 Digital Interfaces
	6.1 Serial
	6.2 SPI
	6.3 I2C
	6.4 CAN
	6.5 Summary

	Chapter 7 Networking and Communications
	7.1 Ethernet
	7.2 Ethernet Web Client and Web Server
	7.3 TCP Socket and UDP Socket
	7.4 WebSocket
	7.5 WiFi
	7.6 Summary

	Chapter 8 Digital Signal Processing and Control
	8.1 Low‐Pass Filter
	8.2 High‐Pass Filter
	8.3 Band‐Pass Filter
	8.4 Band‐Stop Filter and Notch Filter
	8.5 Fast Fourier Transform (FFT)
	8.6 PID Controller
	8.7 Summary

	Chapter 9 Debugging, Timer, Multithreading, and Real‐Time Programming
	9.1 Debugging
	9.2 Timer, Timeout, Ticker, and Time
	9.3 Network Time Protocol (NTP)
	9.4 Multithreading and Real‐Time Programming
	9.5 Summary

	Chapter 10 Libraries and Programs
	10.1 Import Libraries and Programs
	10.2 Export Your Program
	10.3 Write Your Own Library
	10.4 Publish Your Library
	10.5 Publish Your Program
	10.6 Version Control
	10.7 Collaborations
	10.8 Update Your Library and Program
	10.9 Summary

	Part III The IoT Starter Kit and IoT Projects
	Chapter 11 Arm® Mbed™ Ethernet IoT Starter Kit
	11.1 128×32 LCD
	11.2 Joystick
	11.3 Two Potentiometers
	11.4 Speaker
	11.5 Three‐Axis Accelerometer
	11.6 LM75B Temperature Sensor
	11.7 RGB LED
	11.8 Summary

	Chapter 12 IoT Projects with Arm® Mbed™
	12.1 Temperature Monitoring over the Internet
	12.2 Smart Lighting
	12.3 Voice‐Controlled Door Access
	12.4 RFID Reader
	12.5 Cloud Example with IBM Watson Bluemix
	12.5.1 IBM Quickstart Service
	12.5.2 IBM Registered Service (Bluemix)
	12.5.3 Add IBM Watson IoT Service to Your Application
	12.5.4 Add Your Mbed Device to Your Watson IoT Organization
	12.5.5 Adding Credentials onto Your Mbed Device
	12.5.6 Link Your IBM IoT Watson Application to Your Mbed Device
	12.5.7 Sending Commands from Your IBM IoT Watson Application to Your Mbed Board
	12.5.8 More with Node-RED

	12.6 Real-Time Signal Processing
	12.7 Summary

	Part IV Appendices
	Appendix A Example Codes
	Appendix B HiveMQ MQTT Broker
	Appendix C Node‐RED on Raspberry Pi
	Appendix D String and Array Operations
	Appendix E Useful Online Resources

	Index
	EULA

