

Designing Embedded Systems and the Internet of
Things (IoT) with the ARM® Mbed™

Designing Embedded Systems and the Internet
of Things (IoT) with the ARM® Mbed™

Perry Xiao
London South Bank University
UK

This edition first published 2018
© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of Perry Xiao to be identified as the author has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product
is referred to in this work as a citation and/or potential source of further information does not mean that
the publisher and authors endorse the information or services the organization, website, or product may
provide or recommendations it may make. This work is sold with the understanding that the publisher is not
engaged in rendering professional services. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a specialist where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written
and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
Names: Xiao, Perry, author.
Title: Designing embedded systems and the internet of things (IoT) with the

ARM Mbed / by Perry Xiao.
Description: First edition. | Hoboken, NJ : John Wiley & Sons, Inc., [2018] |

Includes bibliographical references and index. |
Identifiers: LCCN 2018008687 (print) | LCCN 2018015034 (ebook) | ISBN

9781119364016 (pdf) | ISBN 9781119364047 (epub) | ISBN 9781119363996
(cloth)

Subjects: LCSH: Embedded computer systems–Design and construction | Internet
of things–Equipment and supplies. | Microcontrollers.

Classification: LCC TK7895.E42 (ebook) | LCC TK7895.E42 X56 2018 (print) |
DDC 006.2/2–dc23

LC record available at https://lccn.loc.gov/2018008687

Cover design by Wiley
Cover image: © matejmo/Getty Images; © Raimundas/Shutterstock

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

10  9  8  7  6  5  4  3  2  1

This book is dedicated to my family. To my wife, May, my son, Zieger, and my daughter,
Jessica, who make my life complete—without them, life would be meaningless. To my
parents and my brother, who have shared their life and love with me that ultimately

made me what I am today. To my friends and colleagues, who supported me
throughout my career.

viivii

About the Author  xiii
Preface  xv
Author’s Acknowledgments  xix
About the companion website  xxi

Part I  Introduction to Arm® Mbed™ and IoT  1

1	 Introduction to Arm® Mbed™  3
1.1	 What is an Embedded System?  3
1.2	 Microcontrollers and Microprocessors  4
1.3	 ARM® Processor Architecture  8
1.4	 The Arm® Mbed™ Systems  10
1.4.1	 NXP LPC1768  11
1.4.2	 NXP LPC11U24  14
1.4.3	 BBC Micro:bit  15
1.4.4	 The Arm® Mbed™ Ethernet Internet

of Things (IoT) Starter Kit  17
1.5	 Summary  21
1.6	 Chapter Review Questions  21

2	 Introduction to the Internet of Things (IoT)  23
2.1	 What is the Internet of Things (IoT)?  23
2.2	 How Does IoT Work?  24
2.3	 How Will IoT Change Our Lives?  25
2.4	 Potential IoT Applications  27
2.4.1	 Home  27
2.4.2	 Healthcare  28
2.4.3	 Transport  28
2.4.4	 Energy  28
2.4.5	 Manufacture  28
2.4.6	 Environment  28
2.5	 Summary  29
2.6	 Chapter Review Questions  29

Contents

Contentsviii

3	 IoT Enabling Technologies  31
3.1	 Sensors and Actuators  31
3.2	 Communications  31
3.2.1	 RFID and NFC (Near‐Field Communication)  32
3.2.2	 Bluetooth Low Energy (BLE)  32
3.2.3	 LiFi  33
3.2.4	 6LowPAN  33
3.2.5	 ZigBee  34
3.2.6	 Z‐Wave  34
3.2.7	 LoRa  34
3.3	 Protocols  35
3.3.1	 HTTP  35
3.3.2	 WebSocket  36
3.3.3	 MQTT  37
3.3.4	 CoAP  38
3.3.5	 XMPP  38
3.4	 Node‐RED  39
3.5	 Platforms  41
3.5.1	 IBM Watson IoT—Bluemix (http://www.ibm.com/internet‐of‐things/)  41
3.5.2	 Eclipse IoT (https://iot.eclipse.org/)  42
3.5.3	 AWS IoT (https://aws.amazon.com/iot/)  42
3.5.4	 Microsoft Azure IoT Suite

(https://azure.microsoft.com/en‐us/suites/iot‐suite/)  42
3.5.5	 Google Cloud IoT (https://cloud.google.com/solutions/iot/)  44
3.5.6	 ThingWorx (https://www.thingworx.com/)  44
3.5.7	 GE Predix (https://www.predix.com/)  44
3.5.8	 Xively (https://www.xively.com/)  44
3.5.9	 macchina.io (https://macchina.io/)  45
3.5.10	 Carriots (https://www.carriots.com/)  45
3.6	 Summary  45
3.7	 Chapter Review Questions  45

Part II  Arm® Mbed™ Development  47

4	 Getting Started with Arm® Mbed™  49
4.1	 Introduction  49
4.2	 Hardware and Software Required  49
4.2.1	 Hardware  49
4.2.2	 Software  50
4.3	 Your First Program: Blinky LED  53
4.3.1	 Connect the Mbed to a PC  53
4.3.2	 Click “mbed.htm” to Log In  53
4.3.3	 Add the FRDM‐K64F Platform to Your Compiler  54
4.3.4	 Import an Existing Program  54
4.3.5	 Compile, Download, and Run Your Program  57

Contents ix

4.3.6	 What Next?  57
4.4	 Create Your Own Program  57
4.5	 C/C++ Programming Language  58
4.6	 Functions and Modular Programming  58
4.7	 Manage Platforms  61
4.8	 Clone Your Program  63
4.9	 Search and Replace  64
4.10	 Compile Your Program for Multiple Platforms  65
4.11	 Delete Your Program  65
4.12	 Disaster Recovery Procedure  67
4.13	 Upgrade Firmware  67
4.14	 Help  67
4.15	 Summary  69

5	 Inputs and Outputs  71
5.1	 Digital Inputs and Outputs  71
5.1.1	 Digital Inputs  71
5.1.2	 Digital Outputs  74
5.1.3	 BusIn, BusOut, and BusInOut  79
5.2	 Analog Inputs and Outputs  81
5.2.1	 Analog Inputs  81
5.2.2	 Analog Outputs  82
5.3	 Pulse Width Modulation (PWM)  86
5.4	 Accelerometer and Magnetometer  88
5.5	 SD Card  96
5.6	 Local File System (LPC1768)  99
5.7	 Interrupts  100
5.8	 Summary  101

6	 Digital Interfaces  103
6.1	 Serial  103
6.2	 SPI  106
6.3	 I2C  108
6.4	 CAN  111
6.5	 Summary  113

7	 Networking and Communications  115
7.1	 Ethernet  115
7.2	 Ethernet Web Client and Web Server  119
7.3	 TCP Socket and UDP Socket  124
7.4	 WebSocket  128
7.5	 WiFi  131
7.6	 Summary  135

8	 Digital Signal Processing and Control  137
8.1	 Low‐Pass Filter  137
8.2	 High‐Pass Filter  141

Contentsx

8.3	 Band‐Pass Filter  143
8.4	 Band‐Stop Filter and Notch Filter  146
8.5	 Fast Fourier Transform (FFT)  149
8.6	 PID Controller  160
8.7	 Summary  164

9	 Debugging, Timer, Multithreading, and Real‐Time Programming  165
9.1	 Debugging  165
9.2	 Timer, Timeout, Ticker, and Time  167
9.3	 Network Time Protocol (NTP)  171
9.4	 Multithreading and Real‐Time Programming  173
9.5	 Summary  179

10	 Libraries and Programs  181
10.1	 Import Libraries and Programs  181
10.2	 Export Your Program  181
10.3	 Write Your Own Library  182
10.4	 Publish Your Library  188
10.5	 Publish Your Program  190
10.6	 Version Control  192
10.7	 Collaborations  196
10.8	 Update Your Library and Program  201
10.9	 Summary  202

Part III  The IoT Starter Kit and IoT Projects  203

11	 Arm® Mbed™ Ethernet IoT Starter Kit  205
11.1	 128×32 LCD  205
11.2	 Joystick  207
11.3	 Two Potentiometers  208
11.4	 Speaker  209
11.5	 Three‐Axis Accelerometer  211
11.6	 LM75B Temperature Sensor  211
11.7	 RGB LED  212
11.8	 Summary  214

12	 IoT Projects with Arm® Mbed™  215
12.1	 Temperature Monitoring over the Internet  215
12.2	 Smart Lighting  224
12.3	 Voice‐Controlled Door Access  230
12.4	 RFID Reader  237
12.5	 Cloud Example with IBM Watson Bluemix  242
12.5.1	 IBM Quickstart Service  243
12.5.2	 IBM Registered Service (Bluemix)  245
12.5.3	 Add IBM Watson IoT Service to Your Application  252
12.5.4	 Add Your Mbed Device to Your Watson IoT Organization  252

Contents xi

12.5.5	 Adding Credentials onto Your Mbed Device  257
12.5.6	 Link Your IBM IoT Watson Application to Your Mbed Device  257
12.5.7	 Sending Commands from Your IBM IoT Watson Application

to Your Mbed Board  261
12.5.8	 More with Node-RED  261
12.6	 Real-Time Signal Processing  271
12.7	 Summary  277

Part IV  Appendices  279

	 Appendix A: Example Codes  281

	 Appendix B: HiveMQ MQTT Broker  285

	 Appendix C: Node‐RED on Raspberry Pi  295

	 Appendix D: String and Array Operations  303

	 Appendix E: Useful Online Resources  311

	 Index  313

xiii

Dr. Perry Xiao is an associate professor and course director at the School of Engineering,
London South Bank University, London, United Kingdom. He got his BEng degree in
Opto‐Electronics, MSc degree in Solid State Physics, and PhD degree in Photophysics.
He is a chartered engineer (CEng), a Fellow (FIET) from Institution of Engineering and
Technology (IET) and a Senior Fellow (SFHEA) from Higher Education Academy
(HEA). He has been teaching electronics, software, computer networks, and telecom-
munication subjects at both undergraduate level and postgraduate level for nearly two
decades. He is also supervising BEng final project students and MSc project students
every year. His main research interest is to develop novel infrared and electronic sens-
ing technologies for skin bioengineering applications and industrial nondestructive
testing (NDT). To date, he has finished seven PhD student supervisions, obtained two
UK patent applications, published more than 100 scientific papers, been editorial
reviewer for nine journals, and generated nearly £1 million in research grants.

He is also a director and co‐founder of Biox Systems Ltd., UK—a university spin‐off
company that designs and manufactures state‐of‐the‐art skin measurement instru-
ments, AquaFlux and Epsilon, which have been used in more than 70 organizations
worldwide, including leading cosmetic companies, universities, research institutes, and
hospitals.

About the Author

xv

When I first got the Arm® Mbed™ Lab‐in‐a‐Box (LiB) kits from a colleague a few
years ago, I could not hide my excitement. It was a box of mbed NXP LPC1768
development boards donated through the ARM University Program. One of the key
features of the Arm® Mbed™ system is that you can write and compile your code
online through a web browser. This was completely new to me. I have been using vari-
ous microcontrollers throughout my life. I did my BEng final year project on laser
energy control using Intel’s 8051 single‐chip microcontroller back in the 1980s. The
concept was very simple: read the voltage value from the laser power monitor, com-
pare it with a desired value, and calculate the required adjustment to feed back to the
laser to increase or decrease the laser output. But we had to design and make our own
printed circuit boards (PCB) and to write our own code that would run on 8051. At
that time, programming microcontrollers was not a trivial task. You needed to write
the program in assembly language and punch in the corresponding hexadecimal code
into the microcontroller. We spent many sleepless nights in the lab, mainly for debug-
ging the code. I have since worked with many other microcontroller‐based embedded
systems, and the experiences were very mixed. Some of the embedded systems were
so difficult to use that you would need to download this software, download that
toolchain, etc. Using my students’ words, you needed a PhD just to get the compiler
software running. The code was also sophisticated—you would need to configure this
register, and configure that port. You could produce lines of lines of code, which did
not even do much!

The two embedded systems that impressed me most were Raspberry Pi and Arduino.
Raspberry Pi is very attractive for its price and its compact, credit‐card size. With a full
Debian‐based Linux operating system and graphical user interface, it is a great kit for
people to learn computing and coding. But for many of our student projects, we don’t
need a full operating system, and a lack of analog to digital converter (ADC) and digital
to analog converter (DAC) are also major drawbacks. Arduino is also attractive for its
price and size, but what impressed me most is its simplicity, both in hardware and soft-
ware. I have read many “24 hours” books, and Arduino is genuinely one of the things
that you can truly learn in 24 hours. It is just that simple. However, the limited memory
size means you cannot write too‐long programs, and 10‐bit ADC is often proven to be
inadequate in many applications.

So when I introduced the Arm® Mbed™ NXP LPC1768 development boards to my
students, they loved them. They liked the web‐based compiler. The very fact that you

Preface

Prefacexvi

don’t need to download and install any software on your computer in order to run it is
amazing. It makes life so much easier. The code was also much simpler, much more
understandable. As it is claimed on the Arm® Mbed™ website (https://os.mbed.com/
platforms/FRDM‐K64F/), it can really just take 30 seconds to get the development
board out of the box, and run an application without installing any software!

The Arm® Mbed™ NXP LPC1768 is one of the most popular microcontroller devel-
opment boards, widely used among students and electronic hobbyists. It is based on
32‐bit ARM® Cortex™‐M3 microcontroller with 96 MHz clock speed, 512 KB flash,
32 KB RAM, and, most importantly, 12‐bit ADCs. It is more powerful and runs much
faster than Arduino. It also has lots of interfaces, including Ethernet, USB, CAN, SPI,
I2C, DAC, PWM, and other I/O interfaces.

However, the 32‐bit ARM® Cortex™‐M3 microcontroller is gradually reaching its
shelf life; its replacement is the 32‐bit ARM® Cortex™‐M4 microcontroller. So this book
will be focusing on the new, exciting Arm® Mbed™ Ethernet Internet of Things (IoT)
Starter Kit, which includes an Arm® Mbed™ NXP FRDM‐K64F development board and
an Arm® Mbed™ application shield. The Arm® Mbed™ NXP FRDM‐K64F is the next
generation, flagship development board, which is based on ARM® Cortex™‐M4 micro-
controller with a CPU frequency up to 120 MHz, 1024 KB Flash, 256 KB RAM, and
astonishing two 16‐bit ADCs. It is much faster and more powerful than NXP LPC1768.
It also has DACs and Timers, as well as other interfaces such as Ethernet, USB device
crystal‐less, and Serial. The Arm® Mbed™ Ethernet IoT Starter Kit is a cloud‐based
development kit jointly developed by ARM and IBM. It provides the user with a slick
experience, sending data from the onboard sensors into the IBM cloud. It allows you to
access the IBM cloud applications through IBM’s BlueMix platform. It is particularly
suitable for developers with no specific experience in embedded or web development,
as it provides a platform for learning new concepts and creating working prototypes.
The starter kit hardware can also be modified and extended to satisfy your specific
requirements.

For backward compatibility reasons, many example codes also work for NXP LPC1768
development board and its mbed application board.

As of the time this book was written, the Arm® Mbed™ had just released its latest
Arm® Mbed™ OS (operating systems) version 5.7, which has quite a few changes com-
pared with the previous version mbed OS 3.0 and 2.0. This book is mainly based on the
Arm® Mbed™ OS 5.7, and more details about the new OS are available at the Arm®
Mbed™ documentation website (https://os.mbed.com/docs).

I have thoroughly enjoyed working with the Arm® Mbed™ development boards, and
I hope you will enjoy it too.

How This Book Is Organized

This book aims to teach students how to design and develop embedded systems as well
as Internet of Things (IoT) applications using Arm® Mbed™ development boards. It is
divided into three parts.

Part I: Introduction to Arm® Mbed™ and IoT (Chapters 1–3) gives an introduction of
embedded systems, microcontrollers and microprocessors, Arm® architecture and

https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/docs

Preface xvii

Arm® Mbed™ system. It also provides an overview of the Internet of Things (IoT),
including IoT applications and IoT enabling technologies.

Part II: Arm® Mbed™ Development (Chapters 4–10) illustrates how to get started
with Arm® Mbed™ development, as well as how to work with analog inputs/outputs,
digital inputs/outputs, communication interfaces, debugging, online libraries, and
project managements.

Part III: The IoT Starter Kit and The IoT Projects (Chapters 11–12) introduces the
Arm® Mbed™ Ethernet IoT Starter Kit and provides some example IoT projects.

Part IV: Appendices
Appendix A: Example Codes
Appendix B: HiveMQ MQTT Broker
Appendix C: Node‐RED on Raspberry Pi
Appendix D: String and Array Operations
Appendix E: Useful Resources

Example Codes

All the example source codes are available on the website that accompanies this book.
Appendix A has more details on how to use the codes.

Who This Book Is For

This book is intended for university/college students as well as amateur electronic hob-
byists. It assumes readers have a basic concept of how computers work and can compe-
tently use a computer, i.e., can switch the computer on, log in, run some programs, and
copy files to and from a USB memory stick (without losing their temper!).

It assumes that readers have some electronics experience, such as handling a bread-
board, wires, resisters, power supply, and LEDs. It also assumes readers have some basic
programming experiences (ideally in C/C++, but other languages are also fine), and
know the basic syntax, the different types of variables, the conditional selections, and
the loops and subroutines. Prior knowledge and experiences of microcontrollers are
desirable, but not necessary.

Finally, it assumes readers have a basic concept of computer networks and the
Internet, i.e., understand the concept of IP addresses and port numbers, know how to
find out the IP address of a computer, and can use some of the most commonly used
Internet services such as the World Wide Web, email, file download/upload, online
audio, online video, and even some cloud‐based services.

This book can be used as a core textbook as well as a background‐reading textbook.

Suggested Prerequisite Readings

Electronics:
Electronics All‐in‐One for Dummies, 2nd edition, Doug Lowe, ISBN: 978‐1‐119‐32079‐1,

March 2017.

Prefacexviii

C/C++ Programming:
Beginning Programming with C for Dummies, Dan Gookin, ISBN: 978‐1‐118‐73763‐7,

November 2013.
C++ Primer, 5th edition, Stanley B. Lippman, Josée Lajoie, Barbara E. Moo, Addison

Wesley, ISBN: 978‐0‐321‐71411‐4, August 2012.

Computer Networks and Internet:
Computing Fundamentals: Digital Literacy Edition, Faithe Wempen with Rosemary

Hattersley, Richard Millett, Kate Shoup, ISBN: 978‐1‐118‐97474‐2, August 2014.
Understanding Data Communications: From Fundamentals to Networking, 3rd edition,

Gilbert Held, ISBN: 978‐0‐471‐62745‐6, October 2000.

What You Need

In this book, you will need:

●● Arm® Mbed™ Ethernet IoT Starter Kit
–– NXP FRDM‐K64F development board
–– Mbed application shield

●● Breadboard with jump wires
●● Various sensors
●● A digital or analog oscilloscope (optional)
●● NXP LPC1768 development board and its Application board (optional)
●● Raspberry Pi (https://www.raspberrypi.org/) (optional)
●● Java JDK software (http://www.oracle.com/technetwork/java/javase/downloads/index

.html)
●● Python software (https://www.python.org/downloads/) (optional)

https://www.raspberrypi.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.python.org/downloads/

xix

I would like to express my sincere gratitude to Wiley Publishing for giving me this
opportunity. I would also like to thank Ella Mitchell for her persistence and patience.
Without it, this book would be not possible.

Author’s Acknowledgments

xxi

Don’t forget to visit the companion website for this book:

www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

There you will find valuable material designed to enhance your learning, including:

●● Examples

Scan this QR code to visit the companion website

About the companion website

Part I

Introduction to Arm® Mbed™ and IoT

In this part:
Chapter 1: Introduction to Arm® Mbed™

Chapter 2: Introduction to the Internet of Things (IoT)
Chapter 3: IoT Enabling Technologies

1

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

3

1

Isn’t it a pleasure to study and practice what you have learned?
‐ Confucius

1.1  What is an Embedded System?

An embedded system is a small‐scale computer system that is part of a machine or a
larger electrical/mechanical system. It is often designed to perform certain dedicated
tasks and often a real‐time system. It is called embedded because the computer system
is embedded within a hardware device. Embedded systems are important, as they are
getting increasingly used in many daily appliances, such as digital watches, cameras,
microwave ovens, washing machines, boilers, fridges, smart TVs, and cars. Embedded
systems also often need to be small in size, low in cost, and have low power
consumption.

Figure 1.1 shows the schematic diagram of a typical embedded system that includes a
microcontroller, inputs/outputs, and communication interfaces.

Microcontroller
Microcontroller is the brain of an embedded system, which orchestrates all the opera-
tions. A microcontroller is a computer processor with memory and all input/output
peripherals on it. More details about microcontrollers will be illustrated in the next
section.

Inputs
An embedded system interacts with the outside world through its inputs and outputs.
Inputs can be digital inputs or analog inputs. Inputs are typically used for reading data
from sensors (temperature sensor, light sensor, ultrasound sensor, etc.) or other types of
input devices (keys, buttons, etc.).

Outputs
Outputs can also be digital outputs or analog outputs. Outputs are typically used for
display, driving motors, or other devices (actuators).

Introduction to Arm® Mbed™

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™4

Communication Interfaces
An embedded system communicates with other devices using communication inter-
faces, which includes Ethernet, USB (Universal Serial Bus), CAN (Controller Area
Network), Infrared, ZigBee, WiFi and Bluetooth, for example.

1.2  Microcontrollers and Microprocessors

At the heart of embedded systems are microcontrollers. Although there are embedded
systems built on microprocessors, modern embedded systems are largely based on
microcontrollers. A typical microcontroller contains a central processing unit (CPU),
interrupts, timer/counter, memory, and other peripherals, all in a single integrated cir-
cuit (IC). A microcontroller is a true computer on a chip or system‐on‐a‐chip (SoC).
Microcontrollers are ideal for control applications because you can use them to build an
embedded system with little additional circuitry.

Microcontrollers (MCU or μC) are different from microprocessors (MPU). A
microprocessor is a single IC with only a central processing unit (CPU) on it. In order
to make it functional, you will need to add external memory and other peripheral
devices. Figure 1.2 shows the main differences between a microprocessor and a
microcontroller. To put it simply, you can imagine that a microprocessor is just a CPU
on a single IC, while a microcontroller is a small computer with CPU, memory, and
other peripherals.

Microprocessors are mainly used in general‐purpose systems like personal comput-
ers. They have relatively high computational capacity and can perform numerous tasks.
Microprocessors have relatively high clock frequency, usually in the order of gigahertz.
Microprocessors generally consume more power and often require external cooling
system.

Microcontrollers are designed for control applications and are generally used in
embedded systems. They have relatively low computational capacity and can perform
single or very few tasks. Microcontrollers have relatively low clock frequency, usually in
the order of megahertz. Microcontrollers consume less power and have no need for a
cooling system.

Figure 1.3 shows a more detailed schematic diagram of a microcontroller. Following
are its key components.

Figure 1.1  Schematic diagram of a typical embedded system.

Introduction to Arm® Mbed™ 5

CPU
CPU, often referred to as a processor or central processor, is the brain of a microcon-
troller. See Figure 1.4 for details. It contains three main components: the arithmetic
logic unit (ALU), the control unit, and registers. ALU performs arithmetic and logical
operations, registers provide operands to the ALU and store the results of ALU opera-
tions, and the control unit controls the overall operations and communicates with both
ALU and registers. The operation cycle of CPU can be described as fetch, decode, and
execute.

CPU communicates with its external peripherals such as memory and input/output
through system bus, which includes a data bus, an address bus, and a control bus. The
data bus is for carrying information, the address bus is for determining where the infor-
mation should be sent, and the control bus is for determining the operation. The address

Figure 1.2  Comparison between a microprocessor and a microcontroller.

Figure 1.3  Detailed schematic diagram of a microcontroller.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™6

bus is unidirectional, from CPU to peripherals, while the data bus and control bus are
bidirectional.

CPU can be divided into different types, depending on the instruction set imple-
mented. The instruction set, also called instruction set architecture (ISA), is a set of
basic operations that CPU can perform. Two main types are complex instruction set
computing (CISC) and reduced instruction set computing (RISC). A CISC CPU has
very large instruction sets (300 and more) and more complex hardware, but has
more compact software code. It takes more cycles per instruction. It also uses less
RAM, as there is no need to store intermediate results. A RISC CPU has small
instruction sets (100 and less) and simpler hardware, but has more complicated
software code. It takes one cycle per instruction and uses more RAM to handle
intermediate results. Typical examples of CISC CPUs are AMD and Intel x86, which
are mainly used in personal computers, workstations, and servers, as they are capa-
ble of more sophisticated tasks. Typical examples of RISC CPUs are Atmel AVR,
PIC, and ARM®, which are mainly used in microcontrollers because they consume
less power.

Memory
Microcontrollers use memories for storing programs and data. There two types of
memory, internal and external. Internal memory is limited in size but is fast. For appli-
cations in which internal memory is not enough, external memory is then needed.
Traditionally, there are two types of external memory, random access memory (RAM)
and read‐only memory (ROM). RAM can be accessed randomly and you can perform
both read and write operations to RAM. RAM will lose all its contents when power is
switched off. ROM is read‐only memory, which means you can read data from it but
cannot write data to it. ROM does not lose its contents even if power is switched off;
therefore, it is used to store programs and data permanently.

Figure 1.4  Detailed schematic diagram of a CPU.

Introduction to Arm® Mbed™ 7

However, there are new types of memories, such as electrically erasable programma-
ble ROM (EEPROM) and non‐volatile RAM (NVRAM). Both can be read and write and
do not lose its contents even if power is switched off. Flash memory is the best example
of NVRAM. It is high‐density, low‐cost, fast, and electrically programmable. Flash
memory is being extensively used for embedded systems that contain embedded oper-
ating systems and the application program.

Parallel Input/Output Ports
Parallel input/output ports have multiple wires (or pins) running parallel to each other.
It is called parallel because multiple signals can be accessed all at once. Parallel input/
output ports are mainly used to drive/interface various devices such as LCDs, LEDs,
printers, memories, and so on to a microcontroller. Parallel ports can transfer data
much faster than serial ports, but only suitable for short distance communications due
to interference and noise.

Serial Input/Output Ports
Serial input/output ports use a single data wire to transfer data. Serial ports therefore
are much slower than parallel input/output ports. However, serial ports can have higher
bandwidth, and can be used over longer distances. Universal Asynchronous Receiver/
Transmitter (UART) peripheral is a commonly used serial input/output port in embed-
ded systems. It uses one wire for receiving data (Rx) and one wire for transmitting
data (Tx).

Timers/Counters
Timers and counters are useful functions for a microcontroller. A microcontroller may
have more than one timer and counters. The timers and counters provide all timing and
counting functions inside the microcontroller, including clock functions, modulations,
pulse generations, frequency measuring, and making oscillations.

Analog to Digital Converter (ADC)
ADC converts analog signals to digital signals. It is mainly used for reading voltage
outputs of sensors. ADC can be 8 bits, 10 bits, 12 bits, 16 bits, 24 bits, and even 32 bits.
The higher the number of bits means the higher conversion resolution. The bandwidth
of an ADC (i.e., the range of frequencies it can measure) is determined by its sampling
rate or sampling frequency. According to Nyquist–Shannon sampling theorem, the
highest frequency that an ADC can measure is less than half of its sampling rate. The
typical ADC sampling rate of mbed boards is about a few hundreds kilohertz.

Digital to Analog Converter (DAC)
DAC is the opposite of ADC. DAC converts the digital signals into analog signals. It
usually used for controlling analog devices such as audio speakers, DC motors, and vari-
ous drives.

Interrupt Control
Interrupt is one of the most important and powerful features in microcontroller appli-
cations. The interrupt control is used to interrupt a working program. The interrupts

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™8

can be either hardware interrupts (external, activated by using interrupt pin) or soft-
ware interrupts (internal, by using interrupt instruction during programming).

Reset
Reset is an important function that exists in all microcontrollers. Reset can make sure
microcontrollers go back to its original state. This is important, especially when things
go wrong.

Watchdog
A watchdog, or watchdog timer, is a piece of electronic hardware that is commonly used
in embedded systems to automatically detect software malfunctions and to reset the
processor. A watchdog timer basically counts down from some initial value to zero. The
embedded software selects the counter’s initial value and periodically restarts it. If the
counter ever reaches zero before the software restarts it, the software is presumed to be
malfunctioning and the processor will be reset.

1.3  ARM® Processor Architecture

ARM® (Advanced RISC Machine) architecture is a computer processor architecture
based on reduced instruction set computing (RISC). ARM® architecture was origi-
nally developed by British company Acorn Computers based in Cambridge, United
Kingdom in the 1980s. ARM® originally stood for Arcon RISC Machine. The first
ARM processors were used in BBC Microcomputers. Acorn started working with
Apple Computer and VLSI Technology in the late 1980s. In 1990, Acorn spun off the
design team into a new company named Advanced RISC Machines (ARM®) Ltd. The
company name was later changed to ARM® Holdings plc. ARM® Holdings plc floated
on the London Stock Exchange and NASDAQ in 1998. It became a member of the
FTSE 100 in 1999.

ARM® processors become increasingly popular after being used on Apple’s iPhone
and iPad since 2007. To date, ARM® processors are widely used in smartphones, tablets,
and smart TVs. Over 50 billion ARM® processors were produced as of 2014. In July
2016, ARM® Holdings has an annual turnover about £1 billion and agreed to a £24.3
billion takeover by Japan’s Softbank company. The takeover is largely seen as an invest-
ment for the Internet of Things (IoT), in which ARM® processors will be likely taking a
dominant role.

To date, ARM® processors can be generally divided into three categories: Application,
Real‐time, and Microcontroller, as shown in Table 1.1. The ARM® application proces-
sors (Cortex‐A series) are the most powerful processors, optimized for higher perfor-
mance, and can be typically used in phones, pads, tablets, and computers. The ARM®
Real‐time processors (Cortex‐R series), optimized for faster response, can be typically
used in industrial, home, and automotive applications. The ARM® Microcontroller
processors (Cortex‐M series), optimized for smaller size, and lower power consump-
tion, can be typically used in embedded systems, and, of course, IoT applications!

Figure 1.5 shows the performance functionality and capacity of the ARM® Cortex‐A,
Cortex‐R, and Cortex‐M processors.

Introduction to Arm® Mbed™ 9

Table 1.2 shows the different Cortex‐M microcontrollers. The Cortex‐M0, Cortex‐
M0+, and Cortex‐M23 controllers are designed for the lowest power consumptions.
The Cortex‐M3, Cortex‐M4, and Cortex‐M33 controllers are designed for the highest
efficiency. The Cortex‐M7 controllers are designed for the highest performance. In this
book, we will focus only on the ARM® Microcontroller processors, specifically the
Cortex‐M4 series.

Figure 1.6 shows the features and functions of ARM® Cortex‐M series processors.

Further Information about ARM® Processor Architecture

https://www.arm.com/products/processors/instruction‐set‐architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture

Table 1.1  ARM® architecture categories

Application Real‐time Microcontroller

32‐bit and 64‐bit
A32, T32, and A64
instruction sets
Virtual memory system
Supporting rich operating
systems

32‐bit
A32 and T32 instruction sets
Protected memory system (optional
virtual memory)
Optimized for real‐time systems

32‐bit
T32 / Thumb® instruction set
only
Protected memory system
Optimized for microcontroller
applications

Figure 1.5  The performance functionality and capacity of ARM® processors (reproduced according to:
https://www.arm.com/products/processors/).

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture
https://www.arm.com/products/processors/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™10

1.4  The Arm® Mbed™ Systems

The Arm® Mbed™ is a platform and operating system based on 32‐bit ARM® Cortex‐M
microcontrollers. It is collaboratively developed by ARM® and its technical partners,
and is designed for Internet of Things (IoT) devices. It provides the operating system,
cloud services, tools, and developer ecosystem to make the creation and deployment of
IoT solutions possible.

One of the major features of the Arm® Mbed™ systems is its web‐based development
environment. Just plug the device into computer using a USB cable, which will appear
on your computer as a USB memory stick. Write and compile your software code using
the Arm® Mbed™ Online Compiler, download the compiled code into the device, and
press the onboard reset button to run!

Table 1.2  The Cortex‐M Series Microcontrollers

Lowest Power and Area Performance Efficiency Highest Performance

Cortex‐M23
TrustZone in smallest area, lowest
power
Cortex‐M0+
Highest energy efficiency
Cortex‐M0
Lowest cost, low power
Freely available for design and
simulation via DesignStart

Cortex‐M33
Flexibility, control and DSP
with TrustZone
Cortex‐M4
Mainstream control and DSP
Cortex‐M3
Performance efficiency

Cortex‐M7
Maximum performance,
control and DSP

Figure 1.6  The features and functions of ARM® Cortex‐M series processors from the ARM® website.
(Source: https://community.arm.com/processors/b/blog/posts/
meet‐the‐new‐arm‐cortex‐m7‐processor‐supercharging‐embedded‐devices)

https://community.arm.com/processors/b/blog/posts/meet-the-new-arm-cortex-m7-processor-supercharging-embedded-devices
https://community.arm.com/processors/b/blog/posts/meet-the-new-arm-cortex-m7-processor-supercharging-embedded-devices

Introduction to Arm® Mbed™ 11

Arm® Mbed™ provides all you need to develop IoT and embedded devices. It has a
full support for over 100 mbed‐enabled boards and more than 400 components. It also
has tools for writing, building, and testing applications, and server and client‐side tools
to communicate with your devices.

The mbed microcontrollers provide experienced embedded developers a powerful
and productive platform for building proof‐of‐concepts. For developers new to 32‐bit
microcontrollers, mbed provides an accessible prototyping solution to get projects built
with the backing of libraries, resources, and support shared in the mbed community.

Figure 1.7 and Figure 1.8 show the Arm® Mbed™ home page, and the corresponding
developer website. Figure 1.9 shows a list of development boards that is supported by
the Arm® Mbed™. There are several development boards worth mentioning:

1.4.1  NXP LPC1768

This is one of the most popular development boards. It is based on the NXP LPC1768
microcontroller, with a 32‐bit ARM® Cortex‐M3 core running at 96 MHz. It has 512 KB

Figure 1.7  The Arm® Mbed™ website (top) and the schematic diagram of mbed systems (bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™12

flash, 32 KB RAM and lots of interfaces, including built‐in Ethernet, USB host and
device, CAN, SPI, I2C, ADC, DAC, PWM, and other I/O interfaces. The 12 bits of ADC
are particularly useful. Figure 1.10 shows the board and its pinouts, including com-
monly used interfaces and their locations. The pins P5‐P30 can also be used as DigitalIn
and DigitalOut interfaces.

Features

●● NXP LPC1768 MCU
–– High‐performance ARM® Cortex™‐M3 Core
–– 96 MHz, 32 KB RAM, 512 KB flash
–– Ethernet, USB host/device, 2×SPI, 2×I2C, 3×UART, CAN, 6×PWM, 6×ADC

(12 bits), GPIO

Figure 1.8  The Arm® Mbed™ developed website. The URL used to be https//developer.mbed.org, but
has changed to https//os.mbed.com.

Figure 1.9  The Arm® Mbed™ development boards. The URL used to https//developer.mbed.org/
products, but has changed to https//os.mbed.com/products.

http://https//developer.mbed.org
http://https//os.mbed.com
http://https//developer.mbed.org/products
http://https//developer.mbed.org/products
http://https//os.mbed.com/products

Introduction to Arm® Mbed™ 13

●● Prototyping form‐factor
–– 40‐pin 0.1" pitch DIP package, 54×26mm
–– 5V USB or 4.5‐9V supply
–– Built‐in USB drag ‘n’ drop flash programmer

●● mbed.org developer website
–– Lightweight online compiler
–– High level C/C++ SDK
–– Cookbook of published libraries and projects

There is also an mbed Application Board for NXP LPC1768 (Figure 1.11. The NXP
LPC1768 and its mbed application board make a great learning kit.

Features

●● 128 × 32 graphics LCD
●● 5 way joystick
●● 2 × potentiometers
●● 3.5 mm audio jack (analog out)
●● Speaker, PWM connected
●● 3 Axis +/1 1.5g accelerometer
●● 3.5mm audio jack (analog in)
●● 2 × Servo motor headers
●● RGB LED, PWM connected
●● USB‐mini‐B connector
●● Temperature sensor

Figure 1.10  The NXP LPC1768 development board and its pinout from the Arm® Mbed™ website.
(Source: https://os.mbed.com/platforms/mbed‐LPC1768/)

https://os.mbed.com/platforms/mbed-LPC1768/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™14

●● Socket for Xbee (Zigbee) or RN‐XV (WiFi)
●● RJ45 Ethernet connector
●● USB‐A connector
●● 1.3 mm DC jack input

Further Information about LPC1768

https://os.mbed.com/platforms/mbed‐LPC1768/
https://os.mbed.com/components/mbed‐Application‐Board/
http://www.nxp.com/products/microcontrollers‐and‐processors/arm‐processors/lpc‐
cortex‐m‐mcus/lpc1700‐cortex‐m3/arm‐mbed‐lpc1768‐board:OM11043

1.4.2  NXP LPC11U24

This is another interesting development board. It is based on the NXP LPC11U24, with a
32‐bit ARM® Cortex‐M0 core running at 48 MHz. It includes 32 KB flash, 8 KB RAM,
and lots of interfaces, including USB device, SPI, I2C, ADC, and other I/O interfaces.
Figure 1.12 shows the board and its printout, including the commonly used interfaces and
their locations. The pins P5–P30 can also be used as DigitalIn and DigitalOut interfaces.

Different from NXP LPC1768, NXP LPC11U24 is much slower and less powerful, but
it uses less power and is much cheaper, so it is mainly designed for low‐cost USB devices
and battery‐powered applications.

Features

●● NXP LPC11U24 MCU
●● Low power ARM® Cortex™‐M0 core

Figure 1.11  The mbed application board for NXP LPC1768 development board, front (left) and back
(right), from the Arm® Mbed™ website. (Source: https://os.mbed.com/components/
mbed‐Application‐Board/)

https://os.mbed.com/platforms/mbed-LPC1768/
https://os.mbed.com/components/mbed-Application-Board/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1700-cortex-m3/arm-mbed-lpc1768-board:OM11043
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1700-cortex-m3/arm-mbed-lpc1768-board:OM11043
https://os.mbed.com/components/mbed-Application-Board/
https://os.mbed.com/components/mbed-Application-Board/

Introduction to Arm® Mbed™ 15

●● 48 MHz, 8 KB RAM, 32 KB flash
●● USB device, 2×SPI, I2C, UART, 6×ADC, GPIO
●● Prototyping form‐factor
●● 40‐pin 0.1" pitch DIP package, 54×26mm
●● 5V USB, 4.5–9V supply or 2.4–3.3V battery
●● Built‐in USB drag ‘n’ drop flash programmer
●● mbed.org developer website
●● Lightweight online compiler
●● High‐level C/C++ SDK
●● Cookbook of published libraries and projects

Further Information about LPC11U24

https://os.mbed.com/platforms/mbed‐LPC11U24/
http://www.nxp.com/products/microcontrollers‐and‐processors/arm‐processors/lpc‐
cortex‐m‐mcus/lpc1100‐cortex‐m0‐plus‐m0/arm‐mbed‐lpc11u24‐board:OM13032

1.4.3  BBC Micro:bit

The BBC micro:bit is a pocket‐sized, codable computer, developed by BBC through a
major partnership with 31 organizations, including ARM®, NXP, element14, Microsoft,

Figure 1.12  The NXP LPC11U24 development board and its pinout from the Arm® Mbed™ website.
(Source: https://os.mbed.com/platforms/mbed‐LPC11U24/)

https://os.mbed.com/platforms/mbed-LPC11U24/
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/arm-mbed-lpc11u24-board:OM13032
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc1100-cortex-m0-plus-m0/arm-mbed-lpc11u24-board:OM13032
https://os.mbed.com/platforms/mbed-LPC11U24/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™16

and Cisco. Figure 1.13 shows the board and its printout. It allows anyone to get creative
with technology. BBC has donated a free micro:bit to every 11‐ or 12‐year‐old child in
year 7 or equivalent across the United Kingdom.

The BBC micro:bit is based on a Nordic nRF51822 MCU with 16K RAM and 256K
Flash. There’s also an onboard accelerometer and magnetometer from Freescale.

Features

●● Can be programmed with high‐level online IDEs using the BBC’s website at
http://www.microbit.co.uk/create‐code including:

–– Microsoft TouchDevelop IDE
–– Microsoft Blocks
–– CodeKingdoms Javascript
–– MicroPython

●● mbed enabled
–– Online IDE at developer.mbed.org
–– Easy to use C/C++ SDK
–– Dedicated micro:bit runtime libraries for rapid development (developed by

Lancaster University)

Figure 1.13  The BBC Micro:bit development board and its pinout from the Arm® Mbed™ website.
(Source: https://os.mbed.com/platforms/Microbit/)

http://www.microbit.co.uk/create-code
https://os.mbed.com/platforms/Microbit/

Introduction to Arm® Mbed™ 17

●● Nordic nRF51822 multi‐protocol Bluetooth® 4.0 low energy/2.4GHz RF SoC
–– 32‐bit ARM® Cortex M0 processor (16MHz)
–– 16 kB RAM
–– 256 kB Flash
–– Bluetooth Low Energy Master/Slave capable

●● Input/Output
–– 25 LED matrix
–– Freescale MMA8652 3‐axis accelerometer
–– Freescale MAG3110 3‐axis magnetometer (e‐compass)
–– Push Button ×2
–– USB and Edge connector serial I/O
–– 2/3 reconfigurable PWM outputs
–– 5 × banana/croc‐clip connectors
–– Edge connector
–– 6 × analog in
–– 6‐17 GPIO (configuration dependent)
–– SPI
–– i2c

●● USB Micro B connector
●● JST power connector (3v)

Further Information about Micro:bit

https://www.microbit.co.uk/
https://os.mbed.com/platforms/Microbit/

1.4.4  The Arm® Mbed™ Ethernet Internet of Things (IoT) Starter Kit

This Ethernet IoT Starter Kit includes an Arm® Mbed™ Freedom FRDM‐K64F develop-
ment board and mbed application shield (Figure 1.14). It is designed for the IBM IoT
Foundation and is aimed to provide the user with a slick experience. It allows the user
to send data from the onboard sensors into the IBM cloud easily. It is particularly suit-
able for developers with no specific experience in embedded or web development, as it
provides a platform for learning new concepts and creating working prototypes. It
allows the user to access to IBM cloud applications through IBM’s BlueMix platform, in
which deployment and device management are very simple. The starter kit hardware
can also be modified and extended to suit specific needs.

The FRDM‐K64F development board is the next‐generation development board. It
uses a power‐efficient Kinetis K64F MCU featuring an ARM® Cortex®‐M4 core run-
ning up to 120 MHz and embedding 1024 KB Flash, 256 KB RAM, and lots of peripher-
als (16‐bit ADCs, DAC, timers) and interfaces (Ethernet, USB device crystal‐less, and
serial). The new mbed application shield has been designed to enable the maximum
number of potential experiments with Arduino form factor development boards, keep-
ing as much in common with the mbed application board as possible.

This book focuses on the Arm® Mbed™ IBM Ethernet IoT Starter Kit.
The Arm® Mbed™ Ethernet IoT Kit contents:

https://www.microbit.co.uk
https://os.mbed.com/platforms/Microbit/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™18

Mbed Enabled NXP K64F Development Board

●● NXP K64F Kinetis K64 MCU (MK64FN1M0VLL12)
●● High‐performance ARM® Cortex™‐M4 Core with floating point unit and DSP
●● 120 MHz, 256 KB RAM, 1 MB flash

mbed Application Shield

●● 128×32 graphics LCD
●● 5‐way joystick
●● 2 × potentiometers
●● Speaker, PWM connected
●● 3‐axis +/1 1.5 g accelerometer
●● RGB LED, PWM connected
●● Temperature sensor
●● Socket for XBee (ZigBee) or RN‐XV (WiFi)

MCU Features

●● Kinetis MK64FN1M0VLL12 in 100LQFP
●● Performance

–– ARM® Cortex™‐M4 32‐bit core with DSP instructions and floating point unit (FPU)
–– 120 MHz max CPU frequency

●● Memories and memory interfaces
–– 1024 KB program flash memory

Figure 1.14  The Arm® Mbed™ Ethernet Internet of Things (IoT) Starter Kit, which includes a FRDM‐
K64F development board (left) and its application shield (right).

Introduction to Arm® Mbed™ 19

–– 256 KB RAM
–– FlexBus external bus interface

●● System peripherals
–– Multiple low‐power modes, low‐leakage wake‐up unit
–– 16‐channel DMA controller

●● Clocks
–– 3× internal reference clocks: 32 KHz, 4 MHz, and 48 MHz
–– 2× crystal inputs: 3–32 MHz (XTAL0) and 32 kHz (XTAL32/RTC)
–– PLL and FL

●● Analog modules
–– 2× 16‐bit SAR ADCs up 800 ksps (12‐bit mode)
–– 2× 12‐bit DACs
–– 3× analog comparators
–– Voltage reference 1.13 V

●● Communication interfaces
–– 1× 10/100 Mbit/s Ethernet MAC controller with MII/RMII interface IEEE1588

capable
–– 1× USB 2.0 full‐/low‐speed device/host/OTG controller with embedded

3.3V/120mA Vreg, and USB device crystal‐less operation
–– 1× Controller area network (CAN) module
–– 3× SPI modules
–– 3× I2C modules. Support for up to 1 Mbit/s
–– 6× UART modules
–– 1× Secure dgital host controller (SDHC)
–– 1× I2S module

●● Timers
–– 2× 8‐channel Flex‐Timers (PWM/Motor control)
–– 2× 2‐channel Flex‐Timers (PWM/Quad decoder)
–– 32‐bit PITs and 16‐bit low‐power timers
–– Real‐time clock (RTC)
–– Programmable delay block

●● Security and integrity modules
–– Hardware CRC and random‐number generator modules
–– Hardware encryption supporting DES, 3DES, AES, MD5, SHA‐1, and SHA‐256

algorithms
●● Operating characteristics

–– Voltage range: 1.71 to 3.6 V
–– Flash write voltage range: 1.71 to 3.6 V

Board Features

●● Onboard components
–– FXOS8700CQ—6‐axis combo sensor accelerometer and magnetometer
–– 2 user push buttons
–– RGB LED

●● Connectivity
–– USB full‐/low‐speed on‐the‐go/host/device controller with on‐chip transceiver, 5

V to 3.3 V regulator and micro‐USB connector

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™20

–– Ethernet 10/100 controller with onboard transceiver and RJ45 connector
–– Up to 5× UARTs, 2× SPIs, 2× I2Cs and 1× CAN connected to headers (multiplexed

peripherals)
●● Extensions

–– Micro SD‐card socket
–– Headers compatible with Arduino R3 shields (32‐pins / outer row)
–– Headers for proprietary shields (32‐pins / inner row)

●● Analog and digital IOs (multiplexed peripherals)
–– Up to two ADC 16‐bit resolution with 28 analog I/O pins connected to headers
–– Up to three timers with 18 PWM signals accessible from headers
–– Up to six comparator inputs or one DAC output
–– Up to 40 MCU I/O pins connected to headers (3.3 V, 4 mA each, 400 mA max total)

●● Board power‐supply options (onboard 5 to 3.3 V regulator)
–– USB debug 5 V
–– USB target 5 V
–– 5–9 V Vin on Arduino headers
–– 5 V PWR input
–– Coin‐cell 3.3 V

●● Integrated open SDA USB debug and programming adapter
–– Several industry‐standard debug interfaces (PEmicro, CMSIS‐DAP, JLink)
–– Drag‐n‐drop MSD flash programming
–– Virtual USB to serial port

●● Form factor: 3.2" × 2.1" / 81 mm × 53 mm
●● Software development tools

–– mbed HDK & SDK enabled
–– Online development tools
–– Easy‐to‐use C/C++ SDK
–– Lots of published libraries and projects
–– Alternate offline options NXP free KDS (compiler toolchain) and KSDK library/

examples
●● Supplier website: http://www.nxp.com/frdm‐k64F

Figure 1.15 shows the FRDM‐K64F development board’s component layout and
pinout. Following are the most used pins:
RGB LED  LED1 (LED_RED), LED2(LED_GREEN), LED3 (LED_BLUE), LED4
(LED_RED)
Digital inputs/outputs	 D0, D1, D2, …, D15
Analog inputs	 A0, A1, A2, A3, A4, A5
Analog outputs	 DAC0_OUT
PWM (pulse width modulation)	 A4, A5, D3, D5, D6, …, D13

Further Information about FRDM‐K64F

https://os.mbed.com/platforms/IBMEthernetKit/
https://os.mbed.com/platforms/FRDM‐K64F/
https://os.mbed.com/components/mbed‐Application‐Shield/
http://www.nxp.com/frdm‐k64f

http://www.nxp.com/frdm-k64F
https://os.mbed.com/platforms/IBMEthernetKit/
https://os.mbed.com/platforms/FRDM-K64F/
https://os.mbed.com/components/mbed-Application-Shield/
http://www.nxp.com/frdm-k64f

Introduction to Arm® Mbed™ 21

1.5  Summary

This chapter first explains what an embedded system is and discusses the difference
between microcontrollers and microprocessors. It then introduces the ARM® architec-
ture and Arm® Mbed™ systems.

1.6	 Chapter Review Questions

Q1.1	 What is an embedded system?

Q1.2	 What is the difference between microcontrollers and microprocessors?

Q1.3	 How does CPU work?

Q1.4	 Use a suitable diagram to describe ARM® Processor Architecture.

Q1.5	 �What is Arm® Mbed™? Describe the concepts of mbed cloud services, clients,
and mbed OS.

Q1.6	 Use a table to compare the key features between LPC1768 and FRDM‐K64F.

Figure 1.15  FRDM‐K64F development board’s component layout (left) and the Arduino and NXP
header pinout from the Arm® Mbed™ website. (Source: https://os.mbed.com/platforms/FRDM‐K64F/)

https://os.mbed.com/platforms/FRDM-K64F/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

23

2

Genius is 1 percent inspiration and 99 percent perspiration.
‐ Thomas A. Edison

2.1  What is the Internet of Things (IoT)?

The Internet of Things (IoT) refers to the network of physical objects, It is fast growing
and already has billions of devices connected (Figure 2.1). This is different from the
current Internet, which is largely a network of computers, including phones and tablets.
The “things” in the IoT can be anything from household appliances, machines, goods,
buildings, and vehicles to people, animals, and plants. With the IoT, all the physical
objects are interconnected, capable of exchanging data with each other without human
intervention. They can be accessed and controlled remotely. This is going to completely
transform our lives—it will be truly revolutionary.

The concept of connecting devices together is not new. In 1982, a Coke machine at
Carnegie Mellon University became the first appliance connected to the Internet. It could
keep track of inventory and whether drinks were cold. Since then, connectedness has greatly
expanded, in the areas of ubiquitous computing, machine‐to‐machine (M2M) communica-
tions, and device‐to‐device (D2D) communications. But the term IoT was invented by
British entrepreneur Kevin Ashton in 1999, in a presentation he made to Procter & Gamble.
As that time, he was the cofounder and executive director of the Auto‐ID Center at MIT,
and the vision of IoT was based on radio‐frequency identification, or RFID (radio‐frequency
identification). IoT has evolved since, and became increasingly popular in recent years, due
to the convergence of several enabling technologies, such as microcontrollers, sensors, wire-
less communications, embedded systems, and micro‐electromechanical systems (MEMS).

Today, the IoT is largely seen as the next big thing, the future of the Internet. According
to Internet Society, there will be about 100 billion IoT devices and a global market of
more than $11 trillion by 2025. IoT will grow exponentially just like what the Internet
did about two decades ago.

Further Information about IoT
http://internetofthingswiki.com/
http://www.theinternetofthings.eu/

Introduction to the Internet of Things (IoT)

http://internetofthingswiki.com
http://www.theinternetofthings.eu

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™24

http://www.computerweekly.com/resources/Internet‐of‐Things‐IoT
http://www.ibm.com/Watson/IoT
https://www.microsoft.com/en‐gb/internet‐of‐things/
http://www.cisco.com/c/en_uk/solutions/internet‐of‐things/overview.html

2.2  How Does IoT Work?

There are several steps in order to make the Internet of Things (IoT) work.
First, each “thing” on the Internet of Things must have a unique identity. Thanks to

Internet Protocol Version 6 (IPv6) address, the 128‐bit next‐generation Internet
Protocol (IP) address can provide 2128 different addresses—that is about 6.7 × 1023
addresses per square meter. We should be able to assign a unique ID to every physical
object on the planet.

Second, each “thing” must be able to communicate. There are number of modern
wireless technologies which make communications possible, such as WiFi, Bluetooth
Low Energy, Near‐field communication (NFC), RFID, as well as ZigBee, Z‐Wave, and
6LoWPAN (IPv6 over Low power Wireless Personal Area Networks), etc.

Third, each “thing” needs to have sensors so that we can get information about it.
Sensors can be temperature, humidity, light, motion, pressure, infrared, ultrasound sen-
sors, etc. The new sensors are increasingly getting smaller, cheaper, and more durable.

Fourth, each “thing” needs to have a microcontroller (or microprocessor) to manage
the sensors and communications, and to perform the tasks. There are many microcon-
trollers exist that could be used for IoT, but the ARM® based microcontrollers are no
doubt one of the most influential ones. This book is focused on the Arm® Mbed™
microcontrollers.

Figure 2.1  The symbolic view of the Internet of Things (IoT). (Source: https://pixabay.com/en/
network‐iot‐internet‐of‐things‐782707/)

http://www.computerweekly.com/resources/Internet-of-Things-IoT
http://www.ibm.com/Watson/IoT
https://www.microsoft.com/en-gb/internet-of-things/
http://www.cisco.com/c/en_uk/solutions/internet-of-things/overview.html
https://pixabay.com/en/network-iot-internet-of-things-782707/
https://pixabay.com/en/network-iot-internet-of-things-782707/

Introduction to the Internet of Things (IoT) 25

Finally, we will need cloud services to store, analyze, and display data so that we can
see what’s going on and take action via phone apps. There are already a lot of big com-
panies working on this, such as IBM’s IBM Watson, Google’s Google Cloud Platform,
Microsoft’s Azure, and Oracle’s Oracle Cloud etc. The Arm® Mbed™ is also developing
its own cloud (https://cloud.mbed.com/), but as of this writing, it is still on its first
release, only available to a select group of industrial lead partners.

2.3  How Will IoT Change Our Lives?

The Internet of Things will fundamentally change the way we live and change the way
we interact with world.

We all had this “where are my keys” experience before. Well, in the world of IoT, we
probably won’t need our keys anymore! Our phones are the keys, we are the keys. We
could open the doors using phones, or using our biometric information, such as finger-
prints, palm prints, palm veins, iris, retina, face, and voice. For example, just like in the
folk tale Ali Baba and the Forty Thieves, you could open your home door by saying
“Open Sesame.” But this time is different—only you and your family can open the door,
while others cannot, thanks to voice recognition, which can uniquely identify you and
your family.

IoT can also make our homes smarter. This is already happening, with all these smart
locks, smart meters, smart thermostats, smart lighting, smart grid, and smart cars, etc.
Figure 2.2 shows an example of smart meters and thermostat. The smart home can
wake you up in the morning and start the coffee machine while you are in still the
shower. It can switch on the lights just before you enter the room and switch the lights
off immediately after you leave. As a father of two teenager kids, it will save me the has-
sle of running upstairs and downstairs to switch off the lights after they leave the rooms.
It can allow you to switch on the TV and change channels using your voice commands.

Figure 2.2  Landis Smart Electricity Meter (left) and Nest Learning Thermostat (right). (Source: https://
commons.wikimedia.org)

https://cloud.mbed.com
https://commons.wikimedia.org
https://commons.wikimedia.org

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™26

It can also sense you are coming home and adjust the thermostat or even preheat the
oven. With the advances of artificial intelligence (AI), it also possible to analyze or learn
your living pattern, to turn the heating or air conditioning on when you are at home and
turn the heating or air conditioning off when you are not. This is even more significant
for public buildings, like offices, theaters, hospitals, and museums, where the utility bill
is always a large chunk of the monthly spending.

Both my father and my wife’s father suffered a stroke, which paralyzed them and con-
fined them to beds. Wouldn’t it be nice if we all could have wearable or in‐plant sensors,
that could monitor our heart rate, blood pressure, body temperature, body mass index
(BMI), maybe even blood sugar levels or cholesterol levels, 24 hours a day and 7 days a
week? We could then predict and prevent the stroke even before it happens. We might
also be able to predict many other deadly diseases such as cancers by using big data
analysis and machine learning, so that we could get treated in the earlier stages, and
significantly reduce the needs for hospital admissions. We are going to live healthier
and longer, much, much longer.

Many people around the world suffer food allergies or intolerances. The most com-
mon are to milk, eggs, peanuts, shellfish, tree nuts, soy, and wheat. This can make
routine food shopping a daunting tasking. You must carefully read through the small
prints to figure out whether this product contains the ingredient you would want to
avoid. This will change, of course. Your phone, or any other devices, will tell you which
food product is right for you. This will also help people on a diet and the people who
have special nutrition requirements, such as athletes. After finishing shopping, there
will be no need to check out. By the time you walk out of the supermarket, your pur-
chases will already have been tallied and the total charged to your credit card. The
receipt will be sent to your email or your phone. Just think of the time you could save
in the queue for checking out, especially during peak hours—imagine no longer wait-
ing while the person in front of you gets a price check or tries to pay in coins! If you
don’t like something you bought, or simply just changed your mind, you can simply
return it to a designated area, where the item will be automatically examined. If it is in
satisfactory condition, a refunded will be issued. No questions asked, no signature
required. I like that!

Bullying is a serious issue in many schools. In countless occasions, the victims, or the
parents of the victims, feel powerless, as they can neither prevent, nor prove, what has
happened. With IoT, this will be completely different. Victims could be wired up with
sensors that can automatically logged voice, video, as well as other information in the
cloud storage, and warning messages could be sent to parents and the school. The
school could immediately know at exactly which place, at exactly what time, exactly
who were involved and exactly what has happened. Bullies could be punished swiftly
and fairly. Common sense tells us, if you know that you are definitely going to be caught
for what you are going to do, you probably would not do it in the first place. Bullying
could be a thing of past!

This might also apply to crimes. Many big criminals start with small crimes, and they
often commit the crime because they thought they could get away with it. After suc-
cessfully getting away with a series of small petty crimes, they start to commit more
serious crimes. This escalating cycle continues until one day they caught by police and
sent to prison. After release from prison, with a criminal record, it is very difficult to
get any decent job. So many of them return to crimes, and the vicious cycle repeats

Introduction to the Internet of Things (IoT) 27

again. If we could stop them at the petty crime stage, by using IoT technologies, as
illustrated in the bullying example, they probably would never grow into serious crimi-
nals. So finally, Utopia—a dream that so many people from so many countries have
fought so hard for so long—might be achievable through a technology revolution!
Imagine that!

But just like many things in the life, IoT is not, of course, without controversy. There
are many concerns about IoT. On the top of the list are security and privacy. If you can
access your home appliances remotely, someone else could also access them remotely.
There are already many reports on hacking into cameras, meters, household appliances,
phones, and cars. So security has to be the top priority of any IoT developments.

Privacy is another concern. There will be tons of our information available, such the
name, the date of birth, gender, the address, the telephone number, the credit cards, the
things we do, the products we buy etc. Who owns this information, and who can access
this information? Do you really want everyone to know where you are and what you do?
Do schoolchildren want to wear a wire for us to hear all their conversations? (Not likely!)
Do you really want everyone to know who you are calling, and what you are talking
about? Do you want your entire lives digitally recorded, on the off‐chance a criminal
might be caught? Privacy is one of the most important human rights. No one wants to
live in a Big Brother state. So the whole community must have input, to make sure we
have the balance right—that innocent, law‐abiding citizens can enjoy their right of pri-
vacy, while the police can have enough information to fight the crime and prevent ter-
rorist attacks.

2.4  Potential IoT Applications

2.4.1  Home

Smart homes will be probably the most popular IoT applications. Smart home, or
home automation, is an extension of building automation, with which we can monitor
and control heating, ventilation and air conditioning (HVAC), lighting, appliances,
and security systems. By connecting all the home appliances, we can automate many
daily routines, such as automatically turning on and off the lights and heating, start-
ing or stoping cooking and washing, and so on. With the smart grid and smart meters,
we can reduce the energy usages and utility bill, and with security systems, we can
make the home more secure by automatically detecting, and hopefully deterring,
intrusion using various of infrared, motions, sound, vibration sensors as well as alarm
systems.

Smart home can also make elderly and disabled people more comfortable and safer at
home. With the IoT, we can collect and analyze data from elderly and disabled people to
diagnose diseases, predict potential risks, identify or prevent accidents such as falls,
open or lock the door (or windows) remotely, and let family members monitor them
remotely. With the IoT, it is also possible to get elderly and disabled people more con-
nected to the outside world and reduce their sense of loneliness.

The smart home market was predicted to have a market value over US$137 billion by
the year 2023, according to Markets and Markets (see marketsandmarkets.com, July
2017, Report Code: SE 3172).

http://marketsandmarkets.com

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™28

2.4.2  Healthcare

The IoT make it possible for remote health monitoring and emergency notification sys-
tems. A very popular approach is through wearable technologies. These wearable
devices can collect a range of health data, such as heart rate, body temperature, and
blood pressure, which can then be wirelessly transmitted to a remote site for storage
and further analysis. This also enables telehealth/telemedicine, i.e., to diagnose or treat
patients remotely.

2.4.3  Transport

The IoT can significantly improve transport systems. With all the cars connected, it is
much easier to plan your journey, avoid traffic jams, find a parking space, and reduce
traffic accidents. The driverless cars will no doubt have the biggest impact. Many compa-
nies—such as Tesla, Google, Uber, Volvo, Volkswagen, Audi, and General Motors—are
actively developing and promoting them. The driverless cars can make our journey more
enjoyable, and possibly much safer. Getting a driving license could soon be a thing of past!

The IoT can also benefit public transport. By connecting all the information boards
and advertising billboards at train stations and airports, it helps passengers to get regu-
lar updates, and in the event of an accident, to detect problems quickly and cutting
maintenance costs. By improving end‐to‐end visibility, warehouse management, and
fleet management, the IoT will also benefit the logistics industry.

2.4.4  Energy

By integrating sensors and actuators, it is likely to reduce energy consumption of all the
energy‐consuming devices. The IoT will also modernize the power industry infrastruc-
ture, to improve efficiency and productivity.

2.4.5  Manufacture

The application of IoT in industry often referred as Industry 4.0, or the fourth Industrial
Revolution (Figure 2.3). The first Industrial Revolution took place in eighteenth
century, when steam engine mobilized the industrial production. The second Industrial
Revolution took place in earlier nineteenth century, when electric power powered
mass production. The third Industrial Revolution, or the Digital Revolution, took place
at the end of nineteenth century, when electronics and IT further automated produc-
tion. Industry 4.0 builds on cyber‐physical systems that tightly integrate machines,
software, sensors, Internet, and users together. It will create smart factories, in
which machines can use self‐optimization, self‐configuration, and even artificial intel-
ligence to complete complex tasks in order to deliver vastly superior cost‐efficiencies
and better‐quality goods or services.

2.4.6  Environment

By deploying environmental sensors, we can measure and monitor air quality, water
quality, soil conditions, radiation, and hazardous chemicals more efficiently. We can

Introduction to the Internet of Things (IoT) 29

also predict earthquakes and tsunamis better, and detect forest fire, snow avalanches,
landslides quicker. All these will help us to protect our environment better. By tagging
wild animals, especially endangered species, we can study and understand better the
behavior of the animals, and therefore provide better protections and safer habitats.
The IoT will also enable smart farming, which will provide 24/7 visibility into soil and
crop health, and help farmers to optimize the usage of fertilizers and plant protection
products. This will again inevitably have a positive impact on environment.

2.5  Summary

This chapter introduces the concept of the Internet of Things (IoT), explains how IoT
works, and how IoT will change the way we live. It also introduces some potential IoT
applications.

2.6	 Chapter Review Questions

Q2.1	 What is the Internet of Things (IoT)?

Q2.2	 How does IoT works?

Q2.3	 What are potential IoT applications?

Q2.4	 What is Industry 4.0?

Figure 2.3  Four Industrial Revolutions. (Source: https://commons.wikimedia.org/wiki/
Category:Industry_4.0#/media/File:Industry_4.0.png)

https://commons.wikimedia.org/wiki/Category:Industry_4.0#/media/File:Industry_4.0.png
https://commons.wikimedia.org/wiki/Category:Industry_4.0#/media/File:Industry_4.0.png

31

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

3

Tell me and I forget, teach me and I may remember, involve me and I learn.
‐ Benjamin Franklin

3.1  Sensors and Actuators

A sensor is a device that converts a physical parameter to an electrical output. A sensor
is a type of transducer. Sensors can be divided into analog sensors and digital sensors.
Analog sensors give output in the format of voltages and currents. Microntrollers will
need ADC (analog‐to‐digital converter) to read in the data from analog sensors. Many
newer sensors are digital sensors, i.e., they give output in digital format, using protocols
such as I2C (Inter‐Integrated Circuit), SPI (Serial Peripheral Interface), and UART (uni­
versal asynchronous receiver/transmitter) etc. Digital sensors are excellent for embed­
ded systems, as they bypass the need for ADC, and make the circuit much simpler.
Examples include temperature sensors, humidity sensors, pressure sensors, smoke sen­
sors, sound and light sensors, etc.

An actuator is a device that converts an electrical signal to a physical output, i.e.,
motion. An actuator can be controlled by electric voltage or current, pneumatic or
hydraulic pressure, or even human power. In embedded systems, actuators are mainly
controlled by electricity. When the control signal is received, the actuator converts
the electric energy into mechanical motion. Actuators can create a linear motion,
rotary motion or oscillatory motion. Examples of actuators include electric motors,
piezoelectric actuators, pneumatic actuators, step motors, and door lock actua­
tors etc.

3.2  Communications

Apart from conventional communication technologies such as Ethernet, WiFi, and
Bluetooth, there are many other technologies that can be used for communications in
the Internet of Things.

IoT Enabling Technologies

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™32

3.2.1  RFID and NFC (Near‐Field Communication)

Radio‐frequency identification (RFID) is a technology that can uniquely identify and
track tags attached to objects using radio frequency electromagnetic waves. A RFID
system typically includes a tag, a reader, and an antenna. The reader sends an interro­
gating signal to the tag via the antenna, and the tag responds with its unique informa­
tion. RFID tags can be either active or passive. Active RFID tags have their own power
source and therefore can be read over a long range (up to 100 meters). Passive RFID tags
do not have their own power source. They are powered by the electromagnetic energy
transmitted from the RFID reader. Therefore, they can only be read over a short dis­
tance (<25 m). RFID primarily operate at the following frequency ranges, as shown in
Table 3.1.

Near‐field communication (NFC) is a communication technology that operates at the
same frequency (13.56 MHz) as HF RFID. Different from RFID, NFC is based on peer‐
to‐peer communication, which means that a NFC device can be either a reader or a tag.
This unique ability has made NFC a popular choice for contactless payment, ID cards,
and travel card etc. NFC devices typically communicate within 4 cm (2 in.) of each
other. NFC is now available on most new smart phones. NFC smart phones can be used
for contactless payment, as well as for passing along information (contact info or pho­
tographs) from one smart phone to the other by tapping the two devices together.

https://en.wikipedia.org/wiki/Near_field_communication
https://en.wikipedia.org/wiki/Radio‐frequency_identification

3.2.2  Bluetooth Low Energy (BLE)

Bluetooth low energy (BLE) is a newer member of the Bluetooth family, based on
Bluetooth 4.0 standards. Similar to classic Bluetooth, BLE also operates in the 2.4 GHz
ISM band, but uses a simpler modulation system. BLE remains in sleep mode constantly

Table 3.1  RFID Frequency Bands.

Band Range Data Speed Tags

Low frequency (LF):
125–134.2 kHz

10 m low passive

High frequency (HF):
13.56 MHz

10 cm–1 m low to moderate passive

Ultra high frequency (UHF):
433 MHz

1–100 m moderate passive or active

Ultra high frequency (UHF):
856 MHz–960 MHz

1–12 m moderate to high passive or active

Microwave:
2.45–5.8 GHz

1–2 m high active

Microwave:
3.1–10 GHz

<200 m high active

https://en.wikipedia.org/wiki/Near_field_communication
https://en.wikipedia.org/wiki/Radio-frequency_identification

IoT Enabling Technologies 33

except for when a connection is initiated, and it therefore consumes much less power.
BLE hit the market in 2011, and is marketed as Bluetooth Smart. BLE is designed to
provide much reduced power consumption and cost while maintaining a similar com­
munication range. BLE typically operates at a range about 100 m, with a data rate about
1 Mbits/s.

Following are the typical BLE applications:

●● Heart rate monitors
●● Blood pressure monitors
●● Blood glucose monitors
●● Fibit‐like devices
●● Industrial monitoring sensors
●● Geography‐based, targeted promotions (iBeacon)
●● Proximity sensing

https://www.bluetooth.com/

3.2.3  LiFi

Light Fidelity (LiFi) is a novel, wireless, bidirectional, high‐speed communication
technology based on rapidly modulated visible light. It is a type of Visible Light
Communications (VLC) system. Similar to WiFi, LiFi transmits data using electromag­
netic waves. But instead of using radio waves (MHz – GHz), it uses visible light (~THz).
LiFi uses household LED (light emitting diodes) light bulbs as transmitters. By varying
the electric current supplied to a LED light bulb at extremely high speeds, data can be
encoded as the rapid brightness changes, which can then be picked up by a photo‐
detector (photodiode). These rapid changes are too quick to be noticed to human eyes;
therefore, LiFi does not affect the main function of LED lights—lighting. LiFi has a huge
advantage in term of infrastructure, as LED light bulbs are increasingly used in build­
ings, streets, and vehicles. It can operate at an impressive speed of up to 224 gigabits per
second, and it is insensitive to electromagnetic interference. LiFi cannot penetrate
walls, which means it can only operate at a short range, but at the same time, this makes
it less likely to be hacked. There are already products on the market that can provide
light and connectivity at the same time.

http://purelifi.com/

3.2.4  6LowPAN

6LoWPAN stands for IPv6 (Internet Protocol Version 6) over Low power Wireless
Personal Area Networks (WPAN). It is a basically a low‐power, low data rate, wireless
mesh network based on IEEE 802.15.4 standards, using IPv6 as the communication
protocol. Comparing with other local area networks, 6LoWPAN has a distinct advan­
tage, i.e., it is based TCP/IP open standards, including TCP, UDP, HTTP, COAP, MQTT,
and websockets etc. It has end‐to‐end IPv6 addressable nodes, and can be easily con­
nected to the Internet directly. It is also self‐healing because of mesh routing. 6LoWPAN
has been used in wireless sensor networks, lights, and meters.

https://datatracker.ietf.org/wg/6lowpan/charter/

https://www.bluetooth.com
http://purelifi.com
https://datatracker.ietf.org/wg/6lowpan/charter/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™34

3.2.5  ZigBee

ZigBee is a high‐level communication technology for low‐power, low‐data‐rate per­
sonal area networks, such as sensor networks, home automations, and medical
devices. ZigBee is based on IEEE 802.15.4 standard. It has a transmission distance of
10–100 meters and needs to be line of sight. It operates in the industrial, scientific,
and medical (ISM) radio bands, i.e., 868 MHz in Europe, 915 MHz in the United States
and Australia, 784 MHz in China, and 2.4 GHz in the rest of the world. ZigBee has a
data rate ranging from 20 kbit/s (868 MHz band) to 250 kbit/s (2.4 GHz band). ZigBee
networks are normally cheaper than other wireless networks such as Bluetooth or
WiFi. ZigBee has been used for wireless light switches, electrical meters (smart grid,
demand response, etc.), and industrial equipment monitoring etc.

So what is the difference between ZigBee and 6LoWPAN? Well, ZigBee has been
around longer, and therefore has been adopted more widely than 6LoWPAN. ZigBee is
no doubt still the most popular low‐cost, low‐power wireless mesh networking stand­
ard available today. However, 6LoWPAN is catching up and becoming more attractive,
since it is IP‐based, particularly with IPv6 support. This makes it easier to integrate
with the rest of the Internet. To date, many semiconductor companies (e.g., Texas
Instruments, Freescale, and Atmel etc.) are making 802.15.4 chips that support both
ZigBee and 6LoWPAN.

http://www.zigbee.org/

3.2.6  Z‐Wave

Z‐Wave is a wireless communication technology that is primarily used for home auto­
mation, such as controlling and automating lights and appliances. It can be used as a
security system or to monitor and control your property remotely. Z‐Wave operates at
unlicensed industrial, scientific, and medical (ISM) band, i.e., 868.42 MHz in Europe,
908.42 MHz in the United States and Canada, and other frequencies in other regions.
Z‐Wave is designed to provide reliable, low‐latency transmission at a range of about
100 meters, with data rates up to 100 kbit/s. A Z‐Wave network normally includes a
primary controller and a collection of devices (up to 232).

http://www.z‐wave.com/

3.2.7  LoRa

LoRa is a long‐range communication technology that is intended for low‐power, long‐
distance communications of battery powered IoT devices—that is, low‐power wide area
network (LPWAN). It supports secure bidirectional communications of networks with
millions and millions of devices.

https://www.lora‐alliance.org/

Table 3.2 gives a quick comparison of different wireless communication technologies.
LiFi and WiFi potentially offer the highest data rates, while cellular and LoRa offer the
longest distances.

http://www.zigbee.org
http://www.z-wave.com
https://www.lora-alliance.org

IoT Enabling Technologies 35

3.3  Protocols

Protocols, or communication protocols, are a set of rules that allow devices to com­
municate with each other. Protocols define the syntax, semantics, and synchronization
of communication. A close analogy to protocols is human languages. There are many
communication protocols available for IoT applications. Following are commonly used
protocols: HTTP, Websocket, and MQTT.

3.3.1  HTTP

The Hypertext Transfer Protocol (HTTP) is the communication protocol behind the
World Wide Web (WWW). It is based on client–server architecture, and operates in a
request and response fashion (Figure 3.1). HTTP uses TCP (transmission control pro­
tocol) to provide reliable connections. HTTP is stateless, as the client and server do not

Table 3.2  Comparison of Different Technologies.

Standard Frequency Range Data Rate

LiFi Similar to 802.11 400–800 THz <10 m <224 Gbps
WiFi 802.11a/b/g/n/ac 2.4 GHz and 5 GHz ~50 m <1 Gbps
Cellular GSM/GPRS/EDGE

(2G), UMTS/HSPA
(3G), LTE (4G), 5G

900, 1800, 1900, and
2100 MHz
2.3, 2.6, 5.25, 26.4, and
58.68 GHz

<200 km <500 kps (2G),
<2 Mbps (3G),
<10 Mbps (4G)
<100 Mbps (5G)

Bluetooth Bluetooth 4.2 2.4 GHz 50–150 m 1 Mbps
RFID/NFC ISO/IEC 18000‐3 13.56 MHz 10 cm 100–420 kbps
6LowPAN RFC6282 2.4 GHz and ~1 GHz <20 m 20–250 kbps
ZigBee ZigBee 3.0 based on

IEEE802.15.4
2.4 GHz 10–100 m 250 kbps

Z‐Wave Z‐Wave Alliance
ZAD12837 / ITU‐T
G.9959

868.42 MHz and
908.42 MHz

<100 m <100 kbps

LoRa LoRaWAN 868 MHz and 915 MHz <15 km 0.3–50 kbps

Figure 3.1  The HTTP protocol.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™36

maintain a connection during the communication. The current version is HTTP/1.1
and the previous version is HTTP/1.0. The newer version HTTP/2 is coming soon,
which will have many new features, such as server push, to minimize the number of
clients’ requests and increase speed.

Following is an example of HTTP request message:

GET /index.html HTTP/1.1
Host: www.mbed.com
Connection: keep‐alive
User‐agent: Mozilla/4.0
Accept‐language: en

Following is an example of HTTP response message:

HTTP/1.1 200 OK
Server: nginx/1.7.10
Date: Sun, 12 Feb 2017 12:21:57 GMT
Content‐Type: text/html
Content‐Length: 185
Connection: close
Location: https://www.mbed.com/

<html>
<head><title>… …</title></head>
<body>
… …
</body>
</html>

3.3.2  WebSocket

WebSocket is a communication protocol designed for web browsers and web servers,
but unlike HTTP, WebSocket provides full‐duplex communication over a single TCP
connection. WebSocket is stateful, as the client and server do maintain a connection
during the communication. The WebSocket makes more interaction between a browser
and a web server possible, enables real‐time data transfer and streams of messages. To
date, WebSocket is implemented in all major web browsers, e.g., Firefox 6, Safari 6,
Google Chrome 14, Opera 12.10 and Internet Explorer 10.

Following is an example of WebSocket request message:

GET ws://websocket.test.com/ HTTP/1.1
Host: websocket.test.com
Upgrade: websocket
Connection: Upgrade
Origin: http://test.com

IoT Enabling Technologies 37

Following is an example of WebSocket response message:

HTTP/1.1 101 WebSocket Protocol Handshake
Date: Mon, 16 Jan 2017 16:54:12 GMT
Connection: Upgrade
Upgrade: WebSocket

Further Information about WebSocket

https://www.websocket.org/

3.3.3  MQTT

MQ Telemetry Transport (MQTT) is a lightweight, machine‐to‐machine communica­
tion protocol designed for IoT devices by IBM. MQTT is based on a publisher–
subscriber model, where the publisher publishes data to a server (also called broker),
and the subscriber subscribes to the server and receives data from the server. The
MQTT broker is responsible for distributing messages and can be somewhere in the
Clouds. See Figure 3.2.

For IoT devices, MQTT offers many advantages over HTTP and WebSocket, which
requires a server constantly running, which requires more computing power, more
bandwidth and more energy consumption. They are not purposely designed for IoT
devices, where response times, throughput, lower battery use, and lower bandwidth are
key design criteria. MQTT is purposely design as a “lightweight” messaging protocol,
features faster response and throughput, and lower battery and bandwidth usage.

Figure 3.2  The MQTT protocol.

https://www.websocket.org

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™38

Although MQTT broker also need to be running all the time, but IoT devices (publishers
and subscribers) are lightweight.

MQTT also allows to prioritize messages, such as QoS (Quality of Service):

0: The client/server will deliver the message once, with no confirmation required.
1: The client/server will deliver the message at least once, confirmation required.
2: The client/server will deliver the message exactly once by using a handshake process.

Appendix B has more details on how to download and set up a MQTT broker using
the popular HiveMQ software.

Further Information about MQTT

http://mqtt.org/
http://www.hivemq.com/resources/getting‐started/
http://www.hivemq.com/plugin/mqtt‐message‐log/
http://www.hivemq.com/blog/hivemq‐mqtt‐websockets‐support‐message‐log‐

plugin‐2‐min
http://www.hivemq.com/plugin/file‐authentication/
http://www.hivemq.com/demos/websocket‐client/

3.3.4  CoAP

The Constrained Application Protocol (CoAP) is a specialized application layer proto­
col for constrained IoT devices, i.e., devices with limited computing power, power con­
sumption, and network connectivity, etc. It is based on request and response messages,
similar to HTTP, but it uses UDP (user datagram protocol) rather TCP (transmission
control protocol). Although UDP does not provide reliable transmissions, it is much
simpler, has much smaller overhead, and hence it is much faster. CoAP is designed for
machine‐to‐machine (M2M) applications such as smart energy and home / building
automation.

Further Information about CoAP

http://coap.technology/
https://tools.ietf.org/html/rfc7252

3.3.5  XMPP

Extensible Messaging and Presence Protocol (XMPP) is an open standard, real‐time
communication protocol based on XML (Extensible Markup Language). It can provide a
wide range of services including instant messaging, presence and collaboration. It is
decentralized and has security features. It is also extensible, which means it is designed to
grow and accommodate changes. XMPP software includes servers, clients, and libraries.

Further Information about XMPP

https://xmpp.org/

http://mqtt.org
http://www.hivemq.com/resources/getting-started/
http://www.hivemq.com/plugin/mqtt-message-log/
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/plugin/file-authentication/
http://www.hivemq.com/demos/websocket-client/
http://coap.technology
https://tools.ietf.org/html/rfc7252
https://xmpp.org

IoT Enabling Technologies 39

3.4  Node‐RED

Node‐RED is a web‐based open source software tool developed by IBM, which can be used
to connect hardware devices over the Internet. Figure 3.3 shows the Node‐RED homepage.
For example, with Node‐RED, you can connect your mbed development board to the
Internet, read the sensor values, display it in a chart, in a web page, in an email, or a Twitter
message. You can also send commands back to the development board to perform some
control. It is a graphic‐based programming tool, which uses functional blocks called nodes
to build the program. All you need to do is to wire up the nodes and configure them. This
makes many programming tasks remarkably simple and easy to implement. Figure 3.4
shows a simple WebSocket‐based chat program implemented in Node‐RED.

Node‐RED is a great tool for IoT projects. It uses JavaScript to create functions, and
allows user to import and export programs using JSON (JavaScript Object Notation),
which is a lightweight open standard for data exchange.

There are many ways of using Node‐RED, the most straight forward way is to use
Node‐RED from the IBM Watson IoT Platform—Bluemix, as shown in Figure 3.5. More
details are available in Chapter 12.

Alternatively, you can also use Node‐RED on Raspberry Pi; see Appendix C for more
details.

Further Information about Node‐RED

https://nodered.org/
https://flows.nodered.org/
https://nodered.org/docs/getting‐started/first‐flow

Figure 3.3  The Node‐RED website.

https://nodered.org
https://flows.nodered.org
https://nodered.org/docs/getting-started/first-flow

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™40

Figure 3.4  A simple WebSocket chat program written in Node‐RED.

Figure 3.5  A Node‐RED program for the Arm® Mbed™ IBM IoT starter kit.

IoT Enabling Technologies 41

3.5  Platforms

IoT platforms connect the sensors and data network to one another, integrating with
backend applications to provide insights using backend applications to make sense of
plethora of data generated by hundreds of sensors. With Iot platforms, you can connect
and monitor your devices and sensors, display and analyze sensor data, control your
devices, and develop software applications for your devices. Following is a list of com­
monly used IoT platforms.

3.5.1  IBM Watson IoT—Bluemix (http://www.ibm.com/internet‐of‐things/)

IBM Watson is a cloud‐based computer system that combines artificial intelligence (AI)
and sophisticated analytical software for optimal performance as a “question answer­
ing” machine. IBM Watson also supports IoT applications. The IBM Watson IoT plat­
form Bluemix allows users to build IoP applications quickly, and connect IoT devices
easily and securely. Figure 3.6 shows the schematic diagram of IBM Watson IoT plat­
form from the IBM Watson website. Device‐specific SDKs are available for Embedded
C, JavaScript, Python, iOS, Android and Arduino Yún. The Arm® Mbed™ FRDM‐K64F
development kit used in this book can be easily connected to the IBM Watson IoT
platform. The IBM Water IoT platform also provides real‐time insights that contextual­
ize and analyze real‐time IoT data.

Figure 3.6  The schematic diagram of IBM Watson IoT platform from IBM website. (Source: https://
console.ng.bluemix.net/catalog/services/internet‐of‐things‐platform/)

http://www.ibm.com/internet-of-things/
https://console.ng.bluemix.net/catalog/services/internet-of-things-platform/
https://console.ng.bluemix.net/catalog/services/internet-of-things-platform/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™42

3.5.2  Eclipse IoT (https://iot.eclipse.org/)

This is an open source platform developed by The Eclipse Foundation. Eclipse IoT pro­
vides the technology needed to build IoT devices, gateways, and cloud platforms. See
Figure 3.7 for the corresponding three software stacks. Eclipse IoT provides open source
implementations of IoT standards and protocols, open‐source frameworks and services
that will be used by IoT solutions, and tools for IoT developers.

3.5.3  AWS IoT (https://aws.amazon.com/iot/)

Amazon’s AWS IoT platform provides secure communications between IoT devices
and the AWS. AWS IoT supports HTTP, WebSockets, and MQTT. Figure 3.8 shows
the schematic diagram of Amazon’s AWS IoT platform from the Amazon website. Its
Rules Engine can route messages to AWS endpoints, including AWS Lambda, Amazon
Kinesis, Amazon S3, Amazon Machine Learning, Amazon DynamoDB, Amazon
CloudWatch, and Amazon Elasticsearch Service with built‐in Kibana integration. It
can also create a persistent, virtual version, or “shadow,” of each device that includes
the device’s latest state, so that users can interact with devices even when they are
offline.

3.5.4  Microsoft Azure IoT Suite (https://azure.microsoft.com/en‐us/suites/
iot‐suite/)

Microsoft Azure IoT Suite can be easily integrated with your systems and applications,
including Salesforce, SAP, Oracle Database, and Microsoft Dynamics. It packages
together Azure IoT services with preconfigured solutions. Azure IoT Suite supports
HTTP, Advanced Message Queuing Protocol (AMQP), and MQTT. A set of device
SDKs for .NET, JavaScript, Java, C and Python are available. Figure 3.9 shows the sche­
matic diagram of Microsoft Azure IoT solution architecture.

Figure 3.7  The software stacks of Eclipse IoT platform for constrained devices, gateways, and cloud
platforms. (Source: https://iot.eclipse.org/devices/)

https://iot.eclipse.org
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/suites/iot-suite/
https://azure.microsoft.com/en-us/suites/iot-suite/
https://iot.eclipse.org/devices/

IoT Enabling Technologies 43

Figure 3.8  The schematic diagram of Amazon AWS IoT platform from the Amazon website.
(Source: https://aws.amazon.com/iot‐platform/how‐it‐works/)

Figure 3.9  The schematic diagram of Microsoft Azure IoT solution architecture. (Source: https://docs.
microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-azure-iot)

https://aws.amazon.com/iot-platform/how-it-works/
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-what-is-azure-iot

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™44

3.5.5  Google Cloud IoT (https://cloud.google.com/solutions/iot/)

Google Cloud IoT takes advantage of Google’s heritage of web‐scale processing, ana­
lytics, and machine intelligence. It utilizes Google’s global fiber network (70 points of
presence across 33 countries) for ultra‐low latency. Software libraries are available
for Go, Java (Android), .NET, JavaScript, Objective‐C (iOS), PHP, Python and Ruby.
Figure 3.10 the schematic diagram of Google Cloud IoT platform.

3.5.6  ThingWorx (https://www.thingworx.com/)

ThingWorx is a complete development platform for the Internet of Things. Thing­
Worx enables powerful, enterprise IoT solutions. Its Coldlight software can provide
automated predictive analytics, as well as other IoT analytics. It also features Aug­
mented Reality Integration (Vuforia Studio Enterprise), Edge Microserver, and
“Always On” SDK.

3.5.7  GE Predix (https://www.predix.com/)

GE Predix platform supports over 60 regulatory frameworks worldwide. It is based on
Pivotal Cloud Foundry, and provides many Predix Services.

3.5.8  Xively (https://www.xively.com/)

Xively supports connections using native MQTT and WebSockets MQTT. It provides a
C client library for use on devices. Xively provides an application for integrating con­
nected products into the Salesforce Service Cloud.

Figure 3.10  The schematic diagram of Google Cloud IoT platform. (Source: https://cloud.google.com/
solutions/iot‐overview)

https://cloud.google.com/solutions/iot/
https://www.thingworx.com
https://www.predix.com
https://www.xively.com
https://cloud.google.com/solutions/iot-overview
https://cloud.google.com/solutions/iot-overview

IoT Enabling Technologies 45

3.5.9  macchina.io (https://macchina.io/)

This is an open‐source‐based IoT platform that implements a web‐enabled, modular,
and extensible JavaScript and C++ runtime environment. It is based on the POCO C++
Libraries and the V8 JavaScript engine. It is also based on a powerful plug‐in and ser­
vices model. It includes HTTP(S) and MQTT clients and SQLite as its embedded
database.

3.5.10  Carriots (https://www.carriots.com/)

This platform provides integrations with Arduino, Raspberry Pi, and other DIY hard­
ware platforms

It uses its HTTP RESTful API to push and pull XML or JSON encoded data. It deploys
and scales from tiny prototypes to thousands of devices.

3.6  Summary

This chapter introduces the IoT enabling technologies, including sensors and actuators,
communications, protocols, and various of IoT platforms.

3.7	 Chapter Review Questions

Q3.1	 What are sensors and actuators?

Q3.2	 What is BLE?

Q3.3	 How does LiFi work?

Q3.4	 What is 6LowPAN?

Q3.5	 What is Arm® Mbed™?

Q3.6	 What is WebSocket?

Q3.7	 What is WebSocket?

Q3.8	 What is MQTT?

Q3.9	 What is Node‐RED?

Q3.10	 What are IoT platforms?

https://macchina.io
https://www.carriots.com

Part II

Arm® Mbed™ Development

In this Part:
Chapter 4: Getting Started with Arm® Mbed™

Chapter 5: Inputs and Outputs
Chapter 6: Digital Interfaces
Chapter 7: Networking and Communications
Chapter 8: Digital Signal Processing and Control
Chapter 9: Debugging, Timer, Multithreading, and Real‐Time Programming
Chapter 10: Libraries and Projects

47

49

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

4

Success consists of going from failure to failure without loss of enthusiasm.
‐ Winston Churchill

4.1  Introduction

The current version of Arm® Mbed™ OS (operating system) is version 5.7. As shown in
the Arm® Mbed™ documentation website (https://os.mbed.com/docs) (Figure 4.1). You
can have three ways to get started with Arm® Mbed™ development.

●● Online compiler
●● Command line interface (mbed CLI)
●● Third‐party development environment

The easiest and quickest way is Arm® Mbed™ online compiler, e.g., the web‐based
compiler (https://os.mbed.com/docs/v5.6/tools/arm‐mbed‐online‐compiler.html). This
is what this book is focused on.

For the Arm® Mbed™ CLI, you will need to download and install the Arm® Mbed™ CLI
software (https://os.mbed.com/docs/v5.6/tools/mbed‐cli.html). It takes some effort, but
the advantage is that it can work offline—that is, without Internet connection!

There are also a lot of third‐party development environments available, including Keil
uVision, DS‐5, LPCXpresso, GCC, IAR Systems, and Kinetic Design Studio. More
details can be found at https://os.mbed.com/docs/v5.6/tools/exporting.html

For more details:

https://os.mbed.com/
https://os.mbed.com/docs/v5.6/tools/index.html

4.2  Hardware and Software Required

4.2.1  Hardware

To get started, you will need:

●● The Arm® Mbed™ Ethernet IoT Starter Kit, which includes an mbed Freedom
FRDM‐K64F development board and mbed application shield.

Getting Started with Arm® Mbed™

https://os.mbed.com/docs
https://os.mbed.com/docs/v5.6/tools/arm-mbed-online-compiler.html
https://os.mbed.com/docs/v5.6/tools/mbed-cli.html
https://os.mbed.com/docs/v5.6/tools/exporting.html
https://os.mbed.com
https://os.mbed.com/docs/v5.6/tools/index.html

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™50

●● Micro USB cable
●● Breadboard with jumper wires

4.2.2  Software

Although you don’t need any software to compile and run your application on the Arm®
Mbed™ devices when you are using an online compiler, you do need some software to
communicate with the devices. Depending on your computer, you might need to install
serial port driver and Terminal software.

Serial Port Driver
When you connect your mbed device to your computer, it can appear as a serial port,
also called a virtual COM port. On Mac and Linux, this will happen automatically. For
Windows, you need to install a serial port driver.

Just go to the following Windows Serial Configuration web page (see Figure 4.2) and
follow the instructions to download and install the serial port driver.

https://os.mbed.com/handbook/Windows‐serial‐configuration

Terminal Software
You will also need to install terminal software, through which you can receive and send
data to your mbed device. Just go to the following Arm® Mbed™ “Terminals” website
(see Figure 4.3), and follow the instructions to download and install terminal software.

https://os.mbed.com/handbook/Terminals

Figure 4.1  The Arm® Mbed™ documentation website.

https://os.mbed.com/handbook/Windows-serial-configuration
https://os.mbed.com/handbook/Terminals

Getting Started with Arm® Mbed™ 51

There are several popular terminal software available. In this book, the majority of the
examples are based on Tera Term terminal software (http://sourceforge.jp/projects/
ttssh2/files) in the Microsoft Windows environments, as Tera Term terminal software
can automatically recognize which serial port that your mbed FRDM‐K64F develop-
ment board is connected to (Figure 4.4).

Figure 4.2  The Windows Serial Configuration website.

Figure 4.3  The Arm® Mbed™ Terminals website.

http://sourceforge.jp/projects/ttssh2/files
http://sourceforge.jp/projects/ttssh2/files

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™52

From “Tera Term” software menu “Setup” select “Serial Port…” Then configure serial
port using the standard setup: 9600 baud, 8 bits, 1 stop bit, no parity (9600‐8‐N‐1); see
Figure 4.5 (top).

Figure 4.4  The Tera Term new connection window.

Figure 4.5  The Tera Term Serial port configuration (top) and Terminal configuration (bottom).

Getting Started with Arm® Mbed™ 53

By default, Tera Term only transmits “\r” (CR, carriage return) when you press the
“Enter” key. It is better to configure it to transmit a “\n” (NL, new line) as well, then the
Arm® Mbed™ Serial read function “gets()” should terminate once it receives the “\n”.
See Chapter 7, section 7.1 for more about serial communications.

To configure the transmission, from “Tera Term” software menu “Setup” select
“Terminal…”. Then configure “Transmit:” as “CR+NL”; see Figure 4.5 (bottom).

Other popular terminal software

Putty.exe: https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe
Arduino Serial Monitor: https://www.arduino.cc/en/main/software

4.3  Your First Program: Blinky LED

4.3.1  Connect the Mbed to a PC

Connect the Arm® Mbed™ FRDM‐K64F development board to a computer using micro
USB cable, there are two micro USB port on the board, make you are using the one on
the right side, next to the “Reset” button (Figure 4.6). It will then appear as a standard
USB memory drive, in this case, it is in drive G.

4.3.2  Click “mbed.htm” to Log In

Double‐click the file “mbed.htm”—your web browser will then open a Login / Signup
page (Figure 4.7). If you have an account, just log in; if you don’t have an account, just
sign up by following the instructions.

Figure 4.6  The FRDM‐K64F board and the Arm® Mbed™ USB drive (G:) window.

https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe
https://www.arduino.cc/en/main/software

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™54

Alternatively, you can also go the mbed developer website, https://os.mbed.com/, and
click the “Compiler” menu on the top.

4.3.3  Add the FRDM‐K64F Platform to Your Compiler

After login, you will be redirected to FRDM‐K64F development board home page,
which has all the details of the device (Figure 4.8). Click “Add to your mbed Compiler“
button on the right‐hand side. This will add the FRDM‐K64F development board
platform into your compiler, so that you can start writing code for the device. Each
Arm® Mbed™ development board is a platform, so you will need to add different
platforms for different mbed development board.

4.3.4  Import an Existing Program

Further down the page, there is an “Open existing Project“ section (Figure 4.9). Click
“Import Program” button to import the existing “mbed_blinky” project into your
compiler.

The default project name is “mbed_blinky” (Figure 4.10), but you can change it to any
name you prefer. Click the “Import” button, which will bring you to the online compiler
web page.

Figure 4.11 shows the program online compiler web page. The “main.cpp” is the main
C++ file that defines what your program is going to do. In this example, in the “main.
cpp” file, it first includes the “mbed.h” header file, then defines LED1 as the digital
output. In the “main()” function, it uses a “while” loop to switch the LED1 on, wait for
0.2 second, then switch the LED1 off, and wait another 0.2 seconds.

Figure 4.7  The Arm® Mbed™ Login / Signup window.

https://os.mbed.com

Getting Started with Arm® Mbed™ 55

**
//Example 4.1
#include "mbed.h" //include mbed.h header

DigitalOut myled(LED1); //define LED1 as digital output

int main() { //main function
 while(1) { // while loop
 myled = 1; //switch LED1 off
 wait(0.2); //wait 0.2 seconds
 myled = 0; //switch LED1 on
 wait(0.2); // wait 0.2 seconds
 }
}
**

Figure 4.8  The FRDM‐K64F development board home page.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™56

FRDM‐K64D has only one RGB LED, LED1 (also called LED_RED) here refers to the
red color of RGB LED. Similarly, LED2 (or LED_GREEN) and LED3 (or LED_BLUE)
refer to green and blue colors.

Figure 4.9  The Open existing Project section in FRDM‐K64F development board home page.

Figure 4.10  The Import Program pop‐up window.

Getting Started with Arm® Mbed™ 57

4.3.5  Compile, Download, and Run Your Program

Click the “Compile” button to compile the program. If successful, a file called
“mbed_blinky_K64F.bin” will be created and downloaded to the default download
folder. Copy the file to FRDM‐F64K USB drive and press the reset button to run your
program! Now you should see the red LED blinking!

4.3.6  What Next?

Congratulations! You have just successfully run your first program. Next, you can try to
download and run other existing programs from:

https://os.mbed.com/teams/FRDM‐K64F‐Code‐Share/code/

You can also create your own programs.

4.4  Create Your Own Program

From your online compiler, you can create a new program by clicking the “New”
button. A “Create new program” pop‐up window will appear (Figure 4.12). Make sure
you select the right platform (FRDM‐K64F) and right template. I have found both
“gpio example for the Freescale freedom platform” and “mbed OS Blinky LED
Helloworld!” are good templates to start with. You can then easily modify the code to
do what you want to do.

Figure 4.11  The “mbed_blinky” program online compiler web page.

https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™58

4.5  C/C++ Programming Language

The Arm® Mbed™ program uses C++ programming language. This is different from
C programming language, which was originally developed by Dennis Ritchie for
UNIX operating systems at “AT&T’s Bell Laboratory” of USA back in the 1970s. C is
a low‐level powerful programming language, but it lacks many modern features.
C++ is a newer language based on C, developed by Bjarne Stroustrup, also at Bell
Laboratory in the 1980s. C++ has many features, such as easier memory manage-
ment and object‐oriented programming. All the functions in C are also available
in C++.

4.6  Functions and Modular Programming

When you write simple programs, you can just put all the code inside the “int main()”
function, as shown in Example 4.1. However, when your program is getting longer and
complex, it is better to separate some of the reusable code into functions. Functions are
also called subroutines, procedures or methods. With functions, you can easily reuse
the code, and make the “int main()” function much simpler—hence, reducing the pro-
gramming complexity.

Following is a simple function example. It does exactly the same as Example 4.1, but
uses a functions called “void flashled(double t)” to flash the LED every t seconds.

Figure 4.12  The Create new program pop‐up window.

Getting Started with Arm® Mbed™ 59

**
// Example 4.2
#include "mbed.h"

DigitalOut myled(LED1);

void flashled(double t) {
 myled = 1;
 wait(t);
 myled = 0;
 wait(t);
}
int main() {
 while(1) {
 flashled(0.2);
 }
}
**

You can also put the “void flashled(double t)” function after the “int main()” function,
as shown in Example 4.3. In that case, you will need to declare the functions in the
beginning, before the “int main()” function. The declaration statements for functions
are called prototypes.

**
// Example 4.3
#include "mbed.h"

DigitalOut myled(LED1);

void flashled(double t);

int main() {
 while(1) {
 flashled(0.2);
 }
}
void flashled(double t) {
 myled = 1;
 wait(t);
 myled = 0;
 wait(t);
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™60

Figure 4.13  The program with “main.cpp,” “flashled.cpp,” and “flashled.h” files.

For large projects, you can also separate code into different files. This is called modu-
lar programming. The following example separates the flash led functions into “flash-
led.cpp” and “flashled.h” files, as shown in Figure 4.13. You can add a new file from the
online compiler by right‐clicking your program and select “New File….” The header file,
i.e., “*.h” file, is mainly for declarations, such as compiler directives, variable declara-
tions and function prototypes. The “cpp” file is for implementing the functions. In this
case, the header file “flashled.h” is used to join multiple files together.

**
// Example 4.4 main.cpp
#include "flashled.h"

int main() {
 while(1) {
 flashled(0.2);
 }
}
**

Exercise 4.1 

Add an extra input variable to the “void flashled(double t)” function, so that it becomes
“void flashled(int n, double t)” and it blinks different LED depending on the input
value n.

Getting Started with Arm® Mbed™ 61

**
//Example 4.4 flashled.h

#ifndef FLASHLED_H
#define FLASHLED_H

#include "mbed.h"
void flashled(double t);

#endif
**

**
// Example 4.4 flashled.cpp

#include "flashled.h"

DigitalOut myled(LED1);

void flashled(double t) {
 myled = 1;
 wait(t);
 myled = 0;
 wait(t);
}
**

Further Information about Functions and Modular Programming

https://os.mbed.com/media/uploads/robt/mbed_course_notes_‐_modular_design.pdf

4.7  Manage Platforms

From your online compiler, you can select your platform by clicking the platform icon
on the top‐right corner. From the pop‐up window (Figure 4.14), you can get the full
technical details of the FRDM‐K64F development board and its pin layout. You can also
select a different platform or add more platforms.

Exercise 4.2 

Add an extra input variable to the “void flashled(double t)” function so that it becomes
“void flashled(int n, double t)” and it blinks different LED, depending on the input
value n.

https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_modular_design.pdf

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™62

But to remove a platform, you will need to go back to the Arm® Mbed™ development
board web page and click the “Remove” button on the left‐hand side of the page
(Figure 4.15).

Figure 4.14  The Arm® Mbed™ manage platforms pop‐up window.

Figure 4.15  The Remove platform section in FRDM‐K64F development board home page.

Getting Started with Arm® Mbed™ 63

4.8  Clone Your Program

If you want to create a new program based on the existing one, you can clone your
program, i.e., make a copy of the existing program. Just select the program you would
like to clone, right‐click to display the pop‐up menu, and select “Clone…” (Figure 4.16).
Then select the new name that you would like to save the cloned program as Figure 4.17.

Figure 4.16  The Clone program menu in the program web page.

Figure 4.17  The Save as pop‐up window during cloning.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™64

4.9  Search and Replace

You can search in your program by clicking the “Find” button on the top, or pressing
“CTRL+F” keys. A search and replace tool bar will then appear (Figure 4.18). You can
use it to search and replace within your current file. The “Advanced” button on the right
side allows you to search all the files within your project folder (Figure 4.19).

Figure 4.18  The search and replace in your program.

Figure 4.19  The advanced search in all files in your program.

Getting Started with Arm® Mbed™ 65

4.10  Compile Your Program for Multiple Platforms

Although this book is focused on the FRDM‐K64F development board, most codes are
compatible with other platforms, such as NXP LPC1768. All you need to do is to put
the platform‐specific code in the “#if defined() #elif defined()” structure; see the
following code.

**
// Example 4.5

#include "mbed.h"

#if defined(TARGET_K64F)
 //FRDM‐K64F code here

#elif defined(TARGET_LPC1768)
 //LPC1768 code here

#elif defined(TARGET_LPC4330_M4)
 //LPC4330 code here

#endif

int main() {
 while(1) {
 //common code here
 }
}
**

The platform‐specific codes are mostly related to pin settings. Table 4.1 shows a
comparison of the pinout between FRDM‐K64F and LPC 1768 boards. When you
compile the program, just make sure to select the correct platform. Mode details will
be available in the next few chapters.

4.11  Delete Your Program

From your online compiler, to delete your program, just select the program you want
to delete, and right‐click the mouse. From the right‐click drop‐down menu, select
“Delete…” (Figure 4.20). Simple!

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™66

Figure 4.20  The Delete menu in the program page.

Table 4.1  The pin comparison of FRDM‐K64F and LPC 1768.

FRDM‐K64F LPC 1768

LED LED1 (LED_RED),
LED2(LED_GREEN),
LED3 (LED_BLUE)
LED4 (LED_RED)

LED1,
LED2,
LED3,
LED4

Digital inputs/outputs D0, D1, D2, …, D15 P5, P6, …, P14
Analog inputs A0, A1, A2, A3, A4, A5 P15, P16, …, P20
Analog outputs DAC0_OUT P18
PWM (pulse width
modulation)

A4, A5, D3, D5, D6, …, D13 P21, P22, …, P26

I2C D14, D15 (SCA, SCL) P9, P10 (SCA, SCL)
SPI D11, D12, D13 (MOSI, MISO,

SCLK)
PTD4 (CS)

P5, P6, P7 (MOSI, MISO,
SCLK)
P8 (CS)

Serial D1, D0 (Tx, Rx) P9, P10 (Tx, Rx)

Getting Started with Arm® Mbed™ 67

4.12  Disaster Recovery Procedure

In the event of a disaster, i.e., a faulty program etc., where you cannot see your mbed
USB drive anymore, you can use the following procedure to recover:

●● Unplug the FRDM‐K64F board.
●● Hold the reset button down.
●● While holding the reset button, replug in the FRDM‐K64F board.

The mbed USB drive should reappear. Keep holding the reset button until the new
program is saved onto the USB drive.

In the worst‐case scenario, when even the new program cannot solve the problem,
you will probably need to reload the Firmware; see next section for details.

The following page has more details on how to deal with “dead” mbed devices.
https://os.mbed.com/cookbook/deadmbed

4.13  Upgrade Firmware

As of this writing, the latest firmware version for the FRDM‐K64F is 0226. You can
check the firmware version by either opening the DETAILS.TXT file if present on your
mbed board or opening the MBED.HTM file with a text editor.

If you need to upgrade your firmware, or simply recover from a disaster, as described
in the previous section, the following web page has all the details. Figure 4.21 is the
screenshot of the web page.

https://os.mbed.com/handbook/Firmware‐FRDM‐K64F
You will basically need two steps:

1)	 Enter Bootloader Mode
You can enter the Bootloader mode by unplugging the FRDM‐K64F board, press and
hold the reset button, replug the board, and release the reset button. You board
should be mounted on your computer as “Bootloader” drive (Figure 4.22).

2)	 Download and Upgrade the Firmwire
Download the latest firmwire from the website; copy and paste it into the
“Bootloader” drive.

The latest firmware for LPC1768 and LPC11U24 can be found in:

https://os.mbed.com/handbook/Firmware‐LPC1768‐LPC11U24

4.14  Help

From your online compiler, you can get help by clicking the “Help” menu. It has all the
details on how to get started, how to import programs and libraries, as well as collabo-
rations, API documents, publishing your code, exporting your code and shortcuts
(Figure 4.23).

Further Information on Help

https://os.mbed.com/docs

https://os.mbed.com/cookbook/deadmbed
https://os.mbed.com/handbook/Firmware-FRDM-K64F
https://os.mbed.com/handbook/Firmware-LPC1768-LPC11U24
https://os.mbed.com/docs

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™68

Figure 4.21  The mbed web page for upgrading FRDM‐K64F firmwire (top) and following the link to
NXP firmware page (bottom).

Getting Started with Arm® Mbed™ 69

4.15  Summary

This chapter describes the hardware and software required for the Arm® Mbed™
development. It also illustrates the steps to get started with the Arm® Mbed™ develop-
ment, how to import and run your first LED blinking Hello World program, and how

Figure 4.22  The mbed board in Bootloader mode.

Figure 4.23  The online Help window.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™70

to create a new project, how to manage the platforms, how to clone your program, how
to search and replace, how to compile your program for multiple platforms, how to
delete your program, how to recovery from disaster, how to upgrade firmware, and
how to get help.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

71

5

Whether you think you can, or you think you can’t—you’re right.
‐ Henry Ford.

5.1  Digital Inputs and Outputs

Digital inputs and outputs are used to read in and write out digital values (i.e., 0 or 1).
The mbed uses a power rail of 3.3 volts, with 0 volts representing 0 (or off), and 3.3 volts
representing 1 (or on).

5.1.1  Digital Inputs

Connect the mbed FRDM‐K64F development board to your computer. From the online
compiler, create a new project, call it “FRDM‐K64F_DigitalIn,” and change the “main.
cpp” content as shown in Figure 5.1.

The “#include “mbed.h”” line includes the mbed header file into the program, which
provides all the functions of mbed. The “DigitalIn din(D7)” line creates a digital input
from pin D7 and associates it with a variable called din. There are 16 digital pins in
FRDM‐K64F, ranging from D0, D1…, to D15. In the “main()” function, the “while(1)”
represents an indefinite loop. This is typical for microcontrollers, as they need to work
continuously all the time. Inside the loop, “din.read()” read the value from the digital
input. As it is digital, the value is either 0 or 1. The “printf()” prints the results out; “%d”
means print a integer type variable value here. “\n\r” means go to a new line after print-
ing. “wait(0.25)” means wait for 0.25 second. By default, “printf()” prints to computer
serial port, this is very useful, as you can view the results using a Terminal software,
such as “Tera Term” (Figure 5.2). There will more about serial communications in the
next chapter.

Inputs and Outputs

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™72

Figure 5.1  The “FRDM‐K64F_DigitalIn” program page.

Figure 5.2  The Tera Term outputs.

**
// Example 5.1

#include "mbed.h"

DigitalIn din(D7);

int main(void)
{
 while (1) {
 printf(“%d\n\r”,din.read());
 wait(0.25);
 }
}
**

Inputs and Outputs 73

Digital inputs are very useful to reading digital values, such as the outputs from a
push button and PIR (Passive Infrared) sensor, as illustrated in Figure 5.3.

Figure 5.3  The schematic circuit diagram of FRDM‐K64F board with a push button (top) and PIR
sensor (bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™74

5.1.2  Digital Outputs

For digital outputs, create another new project, call it “FRDM‐K64F_DigitalOut,” then
modify the “main.cpp” file as follows. In this case, the line “DigitalOut led(LED_BLUE)”
creates a digital output for blue color of RGB LED, and associates it with a variable
called led. The line “led = !led” simply mean you switch the blue LED to opposite state,
if it is one, switch it off, and if it is off, then switch it on. You can also change blue LED
to any of the other digital pins: D0, D1, … D15.

**
// Example 5.2

#include "mbed.h"

DigitalOut led(LED_BLUE);

int main(void)
{
 while (1) {
 led = !led;
 wait(0.5f);
 }
}
**

Exercise 5.1 

Modify the above program so that it blinks “SOS” in Morse code.

Exercise 5.2 

FRDM‐K64F has an RGB LED, which includes a red LED (LED_RED), a green LED
(LED_GREEN), and a blue LED (LED_BLUE) inside. Modify the above program so that
it switches each red, green, and blue LED on and off, one after another, with each lasting
for half a second.

Exercise 5.3 

By switching on and off each red, green, blue LED, it is possible to create 23 = 8 different
colors. Modify the above program so that it switches the 8 colors in a sequence, with
each lasts for quarter a second.

Inputs and Outputs 75

Alternatively, you can also connect an external LED, as shown in Figure 5.4, where
LED’s long leg (+) is connected to D7, and short leg (‐) is connected to the GND.
Following is the example code to flash the LED.

**
// Example 5.3

#include "mbed.h"

DigitalOut led(D7);

int main(void)
{
 while (1) {
 led = !led;
 wait(0.5f);
 }
}
**

Figure 5.4  The schematic circuit diagram of the FRDM‐K64F board with a LED.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™76

You can also check the maximum digital output frequency by switching on and off a
digital pin without any delays, as shown in the following example, which sets D2 pin as
a digital output. You can observe the changes of the output by using an oscilloscope.

**
// Example 5.4

#include "mbed.h"

DigitalOut dout(D2);

int main(void)
{
 while (true) {
 dout = !dout;
 }
}
**

Figure 5.5 shows the D2 pin digital output using a PicoScope 2000 series digital
oscilliscope.

https://www.picotech.com/oscilloscope/2000/picoscope‐2000‐overview

Exercise 5.4 

Based on above example, use three LEDs, red, green, and yellow, and light them up in a
traffic light pattern.

Figure 5.5  The FRDM‐K64F digital output using PicoScope.

https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview

Inputs and Outputs 77

The results show that it is possible to set digital outputs as fast as 666.7 Hz.
Now you can combine the digital inputs and outputs to do something interesting. The

following example reads the digital pin D7, reverses its value (dout = !din;), and sets it
for D8 pin for output. The “printf()” prints out the two pin values, separated by tab “\t”,
to the computer serial port, as shown in the “Tera Term” screenshot (Figure 5.6). Again,
“%d” means to print the numbers as integers, and “\n\r” or “\r\n” means to insert a new
line after printing.

**
// Example 5.5

#include "mbed.h"

DigitalIn din(D7);
DigitalOut dout(D8);

int main(void)
{
 while (1) {
 dout = !din;
 printf("%d \t %d \n\r", din.read(), dout.read());
 wait(0.5f);
 }
}
**

Figure 5.6  The Tera Term outputs.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™78

The above code can be modified for both FRDM‐K64F and LPC 1768 boards. So on
FRDM‐K64F it uses D7 and D8 digital pins, while on LPC 1768 it uses P11 and P12 pins.

**
// Example 5.6

#include "mbed.h"

#if defined(TARGET_K64F)
 DigitalIn din(D7);
 DigitalOut dout(D8);
#elif defined(TARGET_LPC1768)
 DigitalIn din(P11);
 DigitalOut dout(P12);
#endif

int main(void)
{
 while (1) {
 dout = !din;
 printf("%d \t %d \n\r", din.read(), dout.read());
 wait(0.5f);
 }
}
**

Apart from the digital inputs and digital outputs, you can also set a digital pin as both
input and output, i.e., bidirectional, as illustrated in the following example. It first sets
pin D7 (or P11 in LPC1768) as input, waits for 0.5 second, reads and prints its value,
then sets the pin as output, sets its value to 1 (i.e., 3.3 V), prints out the value, and waits
for another 0.5 seconds.

**
// Example 5.7

#include "mbed.h"

#if defined(TARGET_K64F)
 DigitalIn din(D7);
#elif defined(TARGET_LPC1768)
 DigitalIn din(p11);
#endif

Exercise 5.5 

Modify the above program so that it reads two digital inputs from pins D6 and D7,
performs the logical AND, and sets it to D9 pin for output.

Inputs and Outputs 79

int main(void)
{
 while (1) {
 pin.input();
 wait(0.5f);
 printf("Input: %d \n\r", pin.read());
 pin.output();
 pin = 1;
 printf("Output: %d \n\r", pin.read());
 wait(0.5f);
 }
}
**

5.1.3  BusIn, BusOut, and BusInOut

In mbed, “BusIn,” “BusOut,” and “BusInOut” interfaces allow you to create a number of
DigitalIn pins that can be read and/or written as one value. In the following “BusIn”
example, it reads pins D3, D4, D5, D6 (or for LPC1768 are P12, P13, P14, P15) as one
value. D3 is the least significant bit (LSB), and D6 is the most significant bit (MSB). Any
of the numbered mbed pins can be used as a DigitalIn in the “BusIn,” “BusOut,” and
“BusInOut.”

**
// Example 5.8

#include "mbed.h"

#if defined(TARGET_K64F)
 BusIn nibble(D3, D4, D5, D6);
#elif defined(TARGET_LPC1768)
 BusIn nibble(p12, p13, p14, P15);
#endif

int main() {
 while(1) {
 // read the bus and mask out unused bits
 int v = (nibble & nibble.mask());
 printf("%d\r\n",v);
 wait(1);
 }
}
**

The “BusOut” can create a number of DigitalIn pins that can be written as one value.
In the following example, RGB LED (for LPC1768 are LED1, LED2, LED3) will light up
as binary values from 0 to 7.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™80

**
// Example 5.9

#include "mbed.h"

#if defined(TARGET_K64F)
 BusOut nibble(LED_RED, LED_GREEN, LED_BLUE);
#elif defined(TARGET_LPC1768)
 BusOut nibble(LED1, LED2, LED3);
#endif

int main() {
 while(1) {
 for(int i=0; i<8; i++) {
 nibble = i;
 wait(0.5);
 }
 }
}
**

The “BusInOut” can create a number of DigitalIn pins that can be read and written as
one value. In the following example, it creates a bus of four pins: D3, D4, D5, D6 (for
LPC1768 are P12, P13, P14, P15). It first sets the bus as output mode, and writes value
0xF to it, i.e., all pins are set high. It waits for 0.25 second, then sets the bus as input
mode, waits for another 0.25 second, and reads the value from the bus and prints it to
computer serial port. The “%X” means to print the value in hexadecimal format.

**
// Example 5.10

#include "mbed.h"

#if defined(TARGET_K64F)
 BusInOut bio(D3, D4, D5, D6);
#elif defined(TARGET_LPC1768)
 BusInOut bio(p12, p13, p14, p15);
#endif

int main() {
 while(1) {
 bio.output();
 bio = 0xF;
 wait(0.25);
 bio.input();
 wait(0.25);
 // read the bus and mask out unused bits
 int v = (bio & bio.mask());

Inputs and Outputs 81

 printf("%X\n\r",v);
 }
}
**

Further Information on “BusIn,” “BusOut,” and “BusInOut”:

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/DigitalIn/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/DigitalOut/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/DigitalInOut/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/BusIn/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/BusOut/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/BusInOut/

5.2  Analog Inputs and Outputs

5.2.1  Analog Inputs

Analog inputs are for reading in voltage values (0–3.3 V) from the pins, with 12‐bit and
16‐bit resolution, and sampling rate can go up to 800 ksps. The analog pins are A0, A1,
.., A5. The analog outputs are for setting voltage values (0–3.3 V) to pins for outputs.
The analog pin is DAC0_OUT.

Connect the mbed FRDM‐K64F development board to your computer. From the
online compiler, create a new project, call it “FRDM‐K64F_AnalogIn,” and change the
“main.cpp” content as shown. The “AnalogIn ain(A1)” line creates an analog input from
pin A1 and associates it with a variable called ain. There are six analog pins in FRDM‐
K64F, ranging from A0, A1…, to A5. Inside the loop, “ain.read()” read a floating‐point
value from the analog input, as a fractional percentage. The “printf()” prints the results
out, “%10.3f” means print a float‐type variable value here, using minimum 10 spaces
and 3 decimal points. f means floating‐point number. “wait_ms(500)” is another wait
function, which means waiting for 500 millisecond.

**
// Example 5.11

#include "mbed.h"

AnalogIn ain(A1);

int main(void)
{
 while (1) {
 printf("%10.3f\n\r", ain.read());
 wait_ms(500);
 }
}
**

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/DigitalInOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusOut/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/BusInOut/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™82

You can also read in 16‐bit values, as shown in the following example. In this case,
“ain.read_u16()” reads a 16‐bit normalized value from pin A0 and assigns it to variable
v, which is an “uint16_t” type of integer. “%04X” means print the value as a four‐digit
hexadecimal value. The “0x” in the front simply adds 0x in front of the hex number,
e.g., 0×56.

**
// Example 5.12

#include "mbed.h"

AnalogIn ain(A0);

int main(void)
{
 uint16_t v;
 while (1) {
 v = ain.read_u16();
 printf("0x%04X\n\r",v);
 wait_ms(500);
 }
}
**

Analog input is very useful for reading in the voltage values from sensors, such as
analog temperature sensor (LM35) and light‐dependent resistor (LDR). Figure 5.7
shows typical setups for FRDM‐K64F board with a temperature sensor and with a LDR
sensor.

5.2.2  Analog Outputs

For analog output, from the online compiler, create a new project, call it “FRDM‐
K64F_AnalogOut,” and change the “main.cpp” content as shown. The “aout.write()”
write to the analog output pin with a floating‐point value, represents as a fractional
percentage. In this case, it writes 0.5 × 3.3 = 1.65 volts to the pin. The same commend
can also expressed as “aout = 0.5f.” Figure 5.8 shows the Tera Term outputs of the
program.

Inputs and Outputs 83

Figure 5.7  The schematic circuit diagram FRDM‐K64F board with a temperature sensor (top) and LDR
sensor (bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™84

**
// Example 5.13

#include "mbed.h"

AnalogOut aout(DAC0_OUT);

int main(void)
{
 while (1) {
 aout.write(0.5f); // or aout = 0.5f;
 printf("aout = %10.2f volts\n\r", aout.read() * 3.3f);
 wait(1.0f);
 }
}
**

Figure 5.8  The Tera Term outputs.

Inputs and Outputs 85

The following example uses a for loop to set the analog output pin DAC0_OUT in a
seesaw format. It starts with 0.0 × 3.3 volts, increased by 0.1 × 3.3 volts each time, all the
way up to 1.0 × 3.3 volts, then starts all over again.

**
// Example 5.14

#include "mbed.h"

AnalogOut aout(DAC0_OUT);

int main(void)
{
 while (1) {
 for (float i = 0.0f; i < 1.0f; i += 0.1f) {
 aout = i;
 printf("aout = %10.2f volts\n", aout.read() * 3.3f);
 wait(0.2f);
 }
 }
}
**

The following is a multiple platform example for both FRDM‐K64F and LPC 1768
boards. It simply reads the analog input, A0 on FRDM‐K64F, and P15 on LPC 1768,
then assigns the value to analog output pin, DAC0_OUT on FRDM‐K64F, and P18 on
LPC 1768.

Exercise 5.6 

Modify the above program so that it reads the analog input from pins A0, multiply it by
10, and set it to the analog output pin DAC0_OUT for output.

Exercise 5.7 

Modify the above program, so that it can create a sine wave on the analog output pin
DAC0_OUT pin.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™86

**
// Example 5.15

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
 AnalogOut aout(DAC0_OUT);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p15);
 AnalogOut aout(p18);
#endif

int main(void)
{
 while (1) {
 aout = ain.read();
 printf("%10.2f \n\r", aout.read());
 wait(0.5f);
 }
}
**

For more details about Analog Inputs and Outputs

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/AnalogIn/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/AnalogOut/

5.3  Pulse Width Modulation (PWM)

Pulse width modulation, or PWM, is popular a technique for microcontrollers getting
analog results with digital means. It first creates a square wave signal with a fixed fre-
quency. Then, by varying the width of the pulses, you can change the output power.
For example, PWM can be used to control the LED light intensity, or to control the
motor speed.

To use PWM, from the online compiler, create a new project, call it “FRDM‐K64F_
PWM,” and change the “main.cpp” content as shown. The “PWMOut pout(D9)” define
D9 pin as PWM output, the “pout.period(2.0f)” specify the period as 2 seconds, and the
“pout.write(0.5f)” specify the duty cycle is 0.5 or 50%, i.e., 1 second. This code generates
a fixed PWM output of 2‐second pulses with 50% duty cycle. Modify the code, to change
the duty cycle to 10% and 90%, and use an oscilloscope to observe the changes in
pulse width.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/AnalogIn/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/AnalogOut/

Inputs and Outputs 87

**
// Example 5.16

#include "mbed.h"

PwmOut pout(D9);

int main() {
 pout.period(2.0f);
 pout.write(0.50f);
 while(1);
}
**

If you want to change the PWM output while it’s running, you will need to modify
the while loop. As shown in the following example, it sets the period as 1 second, and
within the loop, it first sets the duty cycle to 0.5 second, waits for 5 seconds, then sets
the duty cycle to 0.1 second. You can either use “pout.pulsewidth(0.5f)” or “pout.
write(1.0f)” to specify the duty cycle. The difference is that “pout.pulsewidth(0.5f)”
specifies in seconds, while “pout.write(1.0f)” specifies in percentage. If you put an LED
across the D9 pin and the ground, you will see the LED on brightly for 5 seconds, then
dim for 5 seconds.

**
// Example 5.17

#include "mbed.h"

#if defined(TARGET_K64F)
 PwmOut pout(D9);
#elif defined(TARGET_LPC1768)
 PwmOut pout(p26);
#endif

int main() {
 pout.period(1.0f);
 while(1){
 pout.pulsewidth(0.5f); //or pout.write(1.0f);
 wait(5.0f);
 pout.pulsewidth(0.1f); //or pout.write(0.2f);
 wait(5.0f);
 }
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™88

A very useful application of PWM is to drive a servo motor. In this example, you will
need to import Servo library:

https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07//classServo.html

**
// Example 5.18

#include "mbed.h"
#include "Servo.h"

#if defined(TARGET_K64F)
 PwmOut pout(D9);
#elif defined(TARGET_LPC1768)
 PwmOut pout(p21);
#endif

int main() {
 for(float p=0; p<1.0; p += 0.1) {
 myservo = p;
 wait(0.2);
 }
}
**

Further Information about PWM

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/io/PwmOut/

5.4  Accelerometer and Magnetometer

FRDM‐K64F has an onboard six‐axis combo accelerometer and magnetometer sensor
(FXOS8700Q). To use a sensor, from the online compiler, create a new project, call it
“FRDM‐K64F_FXOS8700Q,” and change the “main.cpp” content as shown. Figure 5.9
shows the program page from the online compiler.

Exercise 5.8 

Imagine that you connected a potentiometer to analog input A0. Modify the above
program so that it reads the value from A0, and change the PWM pulse width
accordingly.

https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07//classServo.html
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/io/PwmOut/

Inputs and Outputs 89

**
// Example 5.19

#include "mbed.h"
#include "FXOS8700Q.h"

I2C i2c(PTE25, PTE24);
FXOS8700QAccelerometer acc(i2c, FXOS8700CQ_SLAVE_ADDR1);

int main(void)
{
 motion_data_units_t acc_data;
 acc.enable();
 printf("FXOS8700QAccelerometer Who Am I= %X\r\n", acc.whoAmI());
 while (true) {
 acc.getAxis(acc_data);
 printf("%1.4ff %1.4ff %1.4ff \r\n", acc_data.x, acc_
data.y, acc_data.z);

 wait(1.0f);
 }
}
**

Figure 5.9  The “FRDM‐K64F_FXOS8700Q” program page.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™90

You will need to import a library called “FXOS8700Q”:
https://os.mbed.com/teams/NXP/code/FXOS8700Q/
You can import it into your project by clicking the “Import!” button, and from the

“Libraries” tab, search for “FXOS8700Q”, then click “Import!” button on top right, as
illustrated in the screenshot in Figure 5.10.

In the “main.cpp”, the “I2C i2c(PTE25, PTE24);” defines the I2C pins, as the
FXOS8700Q sensor uses I2C for communications. There will be more details about I2C
next chapter. The “FXOS8700QAccelerometer acc(i2c, FXOS8700CQ_SLAVE_ADDR1);”
create an variable acc to associate the onboard accelerometer with the I2C pins. The
“acc.enable();” enable the accelerometer, and the “acc.whoAmI();” gives the information
about the accelerometer. The “acc.getAxis();” gets the accelerometer values of X, Y, and
Z axes.

The latest Arduino software (https://www.arduino.cc/en/Main/Software), version
1.6.8 or newer, has an interesting Serial Monitor tool and a Serial Plotter tool, that can
display and plot the three accelerometer values we send to the serial port. Figure 5.11
shows the screenshots of the values as well as plots using Arduino software.

Figure 5.10  The Import library wizard in ”FRDM‐K64F_FXOS8700Q” program page.

https://os.mbed.com/teams/NXP/code/FXOS8700Q/
https://www.arduino.cc/en/Main/Software

Inputs and Outputs 91

Figure 5.11  The Serial Monitor tool (top) and Serial Plotter tool (bottom) outputs in Arduino software.

Apart from “acc.getAxis(),” you can also use “acc.getX(),” “acc.getY(),” and “acc.getZ()”
to get the accelerometer values of the X, Y, and Z axes, as shown in the next example.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™92

**
// Example 5.20

#include "mbed.h"

#include "FXOS8700Q.h"

I2C i2c(PTE25, PTE24);
FXOS8700QAccelerometer acc(i2c, FXOS8700CQ_SLAVE_ADDR1);

int main(void)
{
 motion_data_units_t acc_data;
 float faX, faY, faZ, tmp_float;

 acc.enable();
 printf("FXOS8700QAccelerometer Who Am I= %X\r\n", acc.whoAmI());
 while (true) {
 acc.getX(faX);
 acc.getY(faY);
 acc.getZ(faZ);
 printf("%1.4ff %1.4ff %1.4ff\r\n", faX, faY, faZ);
 printf("%1.4ff %1.4ff %1.4ff\r\n", acc.getX(tmp_float),
acc.getY(tmp_float), acc.getZ(tmp_float));
 wait(1.0f);
 }
}
**

Instead of using unit‐based results as shown in the previous two examples, you can
also use count‐based results when getting the accelerometer values, as shown in the
next example.

**
// Example 5.21

#include "mbed.h"
#include "FXOS8700Q.h"

I2C i2c(PTE25, PTE24);
FXOS8700QAccelerometer acc(i2c, FXOS8700CQ_SLAVE_ADDR1);

int main(void)
{
 motion_data_counts_t acc_raw;
 int16_t raX, raY, raZ, tmp_int;

Inputs and Outputs 93

 acc.enable();
 printf("FXOS8700QAccelerometer Who Am I= %X\r\n", acc.whoAmI());
 while (true) {
 acc.getAxis(acc_raw);
 printf("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", acc_raw.x,
acc_raw.y, acc_raw.z);
 acc.getX(raX);
 acc.getY(raY);
 acc.getZ(raZ);
 printf("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", raX, raY, raZ);
 printf("ACC: X=%06dd Y=%06dd Z=%06dd \r\n", acc.
getX(tmp_int), acc.getY(tmp_int), acc.getZ(tmp_int));
 wait(5.0f);
 }
}
**

Similarly, the following example illustrates how to get readings from a magnetometer
by using unit‐based results.

**
// Example 5.22

#include "mbed.h"
#include "FXOS8700Q.h"

Serial pc(USBTX, USBRX);
I2C i2c(PTE25, PTE24);
FXOS8700QMagnetometer mag(i2c, FXOS8700CQ_SLAVE_ADDR1);

int main(void)
{
 motion_data_units_t mag_data;

 mag.enable();
 printf("FXOS8700QMagnetometer Who Am I= %X\r\n", mag.whoAmI());
 while (true) {
 // unit‐based results
 mag.getAxis(mag_data);
 printf("%4.1ff %4.1ff %4.1ff\r\n", mag_data.x, mag_
data.y, mag_data.z);
 wait(0.5f);
 }
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™94

Again, you can use Arduino software to show the values sent to serial port, and plot
them using Serial Plotter, as illustrated Figure 5.12.

Again, apart from “acc.getAxis(),” you can also use “acc.getX(),” “acc.getY(),” and
“acc.getZ()” to get the accelerometer values of X, Y, and Z axes, as shown in the next
example.

Figure 5.12  The Serial Monitor tool (top) and Serial Plotter tool (bottom) outputs in Arduino software.

Inputs and Outputs 95

**
// Example 5.23

#include "mbed.h"
#include "FXOS8700Q.h"

Serial pc(USBTX, USBRX);
I2C i2c(PTE25, PTE24);
FXOS8700QMagnetometer mag(i2c, FXOS8700CQ_SLAVE_ADDR1);

int main(void)
{
 motion_data_units_t mag_data;
 float fmX, fmY, fmZ, tmp_float;

 mag.enable();
 printf("FXOS8700QMagnetometer Who Am I= %X\r\n", mag.whoAmI());
 while (true) {
 // unit‐based results
 mag.getAxis(mag_data);
 printf("MAG: X=%4.1ff Y=%4.1ff Z=%4.1ff\r\n",
mag_data.x, mag_data.y, mag_data.z);
 mag.getX(fmX);
 mag.getY(fmY);
 mag.getZ(fmZ);
 printf("MAG: X=%4.1ff Y=%4.1ff Z=%4.1ff\r\n", fmX, fmY, fmZ);
 printf("MAG: X=%4.1ff Y=%4.1ff Z=%4.1ff\r\n", mag.
getX(tmp_float), mag.getY(tmp_float), mag.getZ(tmp_float));
 wait(5.0f);
 }
}
**

Following is the same example, but using count‐based results.

**
// Example 5.24

#include "mbed.h"
#include "FXOS8700Q.h"

Serial pc(USBTX, USBRX);
I2C i2c(PTE25, PTE24);
FXOS8700QMagnetometer mag(i2c, FXOS8700CQ_SLAVE_ADDR1);

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™96

Exercise 5.9 

Modify the above program so that it can read both the accelerometer and the mag-
netometer values.

int main(void)
{
 motion_data_counts_t mag_raw;
 int16_t rmX, rmY, rmZ, tmp_int;

 mag.enable();
 printf("FXOS8700QMagnetometer Who Am I= %X\r\n", mag.whoAmI());
 while (true) {
 // count‐based results
 mag.getAxis(mag_raw);
 printf("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", mag_raw.x, mag_
raw.y, mag_raw.z);
 mag.getX(rmX);
 mag.getY(rmY);
 mag.getZ(rmZ);
 printf("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", rmX, rmY, rmZ);
 printf("MAG: X=%06dd Y=%06dd Z=%06dd\r\n", mag.getX(tmp_int),
mag.getY(tmp_int), mag.getZ(tmp_int));
 wait(5.0f);
 }
}
**

NXP LPC1768 development does not include an onboard accelerometer or mag-
netometer, so this section’s code is not applicable to NXP LPC1768.

Further Information about Accelerometer and Magnetometer Sensors

https://os.mbed.com/teams/NXP/code/FXOS8700Q/

5.5  SD Card

FRDM‐K64F board has an onboard SD card socket. To use an SD card, from the online
compiler, create a new project, call it “FRDM‐K64F_SDCard,” and change the “main.
cpp” content as shown. You will need to import a library called “SDFileSystem”:
https://os.mbed.com/users/mbed_official/code/SDFileSystem/

You can import it into your project, by clicking the “Import!” button, and from the
“Libraries” tab, search for “SD card,” as illustrated in Figure 5.13.

https://os.mbed.com/teams/NXP/code/FXOS8700Q/
https://os.mbed.com/users/mbed_official/code/SDFileSystem/

Inputs and Outputs 97

The following example shows how to write to an SD card, as shown in Figure 5.14. If
you have ever written file read and write code in C Language, you will find the syntax is
almost identical. The “SDFileSystem sd(PTE3, PTE1, PTE2, PTE4, “sd”);” line specifies
microcontroller pins that are connected to SD card module; in this case, they are SPI
(Serial Peripheral Interface Bus) pins. We will cover SPI interface in greater detail in

Figure 5.13  The Import Wizard for “SDFileSystem” library.

Figure 5.14  The “FRDM‐K64F_SDCard” program page.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™98

Chapter 6. “FILE *fp;” defines a file handler pointer. “fp = fopen(“/sd/test.txt”, “w”);” tries
to open the file “test.txt” on SD card for writing purpose (“w”). If it opens successfully,
it will write “Hello World” to the file, and if not, it won’t do anything.

The following example shows how to read from SD card. In this example, a character
buffer of 256 bytes is used to read from the file.

**
// Example 5.25

#include "mbed.h"
#include "SDFileSystem.h"

SDFileSystem sd(PTE3, PTE1, PTE2, PTE4, "sd"); // MOSI, MISO, SCK, CS
FILE *fp;

char buffer[256];

int main() {
 fp = fopen("/sd/test.txt", "r");
 if (fp != NULL) {
 int size = fread(buffer, sizeof(char), 256, fp);
 printf("Size: %d, text from file: %s \n", size, buffer);
 fclose(fp);
 }
}
**

Please note that NXP LPC1768 development board does not have an onboard SD
card socket. To save the data, you can use its local file systems. For more information,
see the following section.

Further Information about the SD System

https://os.mbed.com/cookbook/SD‐Card‐File‐System
https://os.mbed.com/teams/NXP/code/FRDMK64_SDCard/?platform=FRDM‐K64F
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/storage/filesystem/

Exercise 5.10 

Modify the above program so that it will read the content from a file and copy the con-
tent to another file.

https://os.mbed.com/cookbook/SD-Card-File-System
https://os.mbed.com/teams/NXP/code/FRDMK64_SDCard/?platform=FRDM-K64F
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/storage/filesystem/

Inputs and Outputs 99

5.6  Local File System (LPC1768)

With mbed NXP LPC1768 and LPC11U24, you can save data files to a specific area of
flash memory installed on the mbed. This is the area you can see from mbed USB drive
on your computer. Following is a simple example to write to a text file in the local file
system and to read from it. The “LocalFileSystem local(“local”)” declaration defines the
local file system. The “FILE* fp1 = fopen(“/local/log.txt”,“w”)” opens the “log.txt” file for
writing purpose (“w”), and similarly, the “FILE* fp2 = fopen("/local/log.txt","r")” opens
the file for reading purpose (“r”). The “fclose()” closes the file. The “fputs()” writes text
to the file, and the “fgets()” reads from the file.

**
// Example 5.26

#include "mbed.h"
Serial pc(USBTX,USBRX);
LocalFileSystem local("local");
char rs[256];
int main ()
{
 FILE* fp1 = fopen("/local/log.txt","w");
 fputs("Hello World", fp1);
 fclose(fp1);

 FILE* fp2 = fopen ("/local/log.txt","r");
 fgets(rs,256,fp2);
 fclose(fp2);
 pc.printf("text data: %s \n\r",rs);
}
**

Following is an example program that reads analog input A0 (or P19 for LPC1768) for
10 times and saves it to a log file. It also uses a Timer to record the time lapsed. In this
example, we use “FILE* fp = fopen(“/local/log.txt”, “a”)” to append to the file (“a”), as
writing to file (“w”) will overwrite the existing file content.

Please be aware that when the microcontroller is reading or writing to a file, LPC1768
will be marked as “removed” on the host computer. This is normal, and it will reappear
when all file handles are closed or the microcontroller program exits.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™100

**
// Example 5.27

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p19);
#endif

Timer t;
LocalFileSystem local("local"); // define local file system
int main() {
 t.start(); // start the timer
 for(int i=0;i<10;i++)
 {
 FILE* fp = fopen ("/local/log.txt","a");
 fprintf(fp,"time=%.3fs: Ain =%.3f \n\r",t.read(),ain.read());
 fclose(fp); // close file
 wait(1);
 }
}
**

Further Information about the Local File System

https://os.mbed.com/handbook/LocalFileSystem
https://os.mbed.com/media/uploads/robt/mbed_course_notes_‐_memory_and_data.pdf

5.7  Interrupts

Interrupt is a very useful way to trigger an event according to the change of an input.
Computer mouse and keyboard typically use interrupt to work. To use interrupts,
from the online compiler, create a new project, call it “FRDM‐K64F_Interrupts” and
change the “main.cpp” content as shown. The “InterruptIn button(sw2);” define Switch 2
as interrupt input. The “flip()” function flips the LED1 on and off. The “button.
rise(&flip);” attached the “flip()” function address to the rising edge of Switch 2 but-
ton. So the program will do nothing most of the time, until you press the Switch 2
button, which will switch the LED1 (red color) one and off. Because the interrupt is
handled by the microcontroller automatically, so you don’t need to put “button.
rise(&flip);” into the while loop.

https://os.mbed.com/handbook/LocalFileSystem
https://os.mbed.com/media/uploads/robt/mbed_course_notes_-_memory_and_data.pdf

Inputs and Outputs 101

**
// Example 5.28

#include "mbed.h"

InterruptIn button(sw2);
DigitalOut led(LED1);

void flip() {
 led = !led;
}

int main() {
 button.rise(&flip);
 while(1);
}
**

Further Information about Interrupts

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/5.1/APIs/io/InterruptIn/

5.8  Summary

This chapter introduces the inputs and outputs of FRDM‐K64F development board,
which includes digital inputs and outputs, bus inputs and outputs, analog inputs and
outputs, PWM, six‐axis combo accelerometer and magnetometer sensor, SD card, local
file system (LPC1768), and interrupts.

Exercise 5.11 

Modify the above program so that it uses two switches and two LEDs such that when
you press Switch 2, it flips the green LED and when you press Switch 3 it flips
blue LED.

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/io/InterruptIn/

103

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

6

The best preparation for tomorrow is doing your best today.
‐ H. Jackson Brown Jr.

Digital interfaces are used by microcontrollers to communicate directly with other
devices.

6.1  Serial

Serial interface is one of the most commonly used and most popular communication
interfaces, due to its simplicity and easiness to use. Serial interface uses two pins to
communicate, Rx and Tx, for receiving data and for transmitting data, respectively.
The default setting for serial interface is, baud rate: 9600; data bits: 8; stop bits: 1; and
parity: no (9600‐8‐N‐1).

To use serial interface, from the mbed online compiler, create a new project, call
it “FRDM‐K64F_Serial”, and change the “main.cpp” content as shown. The “Serial
pc(USBTX, USBRX);” specifies the microcontroller to PC serial communication using
standard USBTX and USBRX pins. The “pc.printf(“Hello World\n”);” will send “Hello
World” to computer using serial port.

**
// Example 6.1

#include "mbed.h"

Serial pc(USBTX, USBRX);

int main() {
 pc.printf("Hello World\n");
 while(1);
}
**

Digital Interfaces

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™104

As we saw in the last chapter, the “printf()” also sends the information to com-
puter serial port; therefore, the following example will work exactly same as the
above code.

**
// Example 6.2

#include "mbed.h"

int main() {
 printf("Hello World\n");
 while(1);
}
**

You can use “pc.getc()” to read a character from a computer serial port, and use
“pc.putc()” to write a character‐to‐computer serial port. The following example will
read a character from computer and echo it back, as long as there is something readable
(pc.readable()).

**
// Example 6.3

#include "mbed.h"

Serial pc(USBTX, USBRX);

int main() {
 while(1) {
 if(pc.readable()) {
 pc.putc(pc.getc());
 }
 }
}
**

You can also use “gets()” function to read a number of characters from a computer
serial port. The following example reads maximally 256 characters each time. To make
“gets()” work efficiently, it is important to configure your terminal software (Tera Term,
putty.exe, Arduino serial monitor etc.) to transmit the data ending with a “\n” (NL, new

Exercise 6.1 

Modify the above program so that it can read lowercase characters from a computer
serial port, convert them to uppercase, and echo them back.

Digital Interfaces 105

line) character. In this way, “gets()” will be able to read variable length of data, as it will
stop whenever it reads a “\n”. See Chapter 5, section 5.2.2, for Tera Term terminal
configuration.

**
// Example 6.4

#include "mbed.h"

Serial pc(USBTX, USBRX);

int main() {
 while(1) {
 if(pc.readable()) {
 char buff [256];
 pc.gets(buff, 256);
 pc.printf("%s\n\r", buff);
 }
 }
}
**

If the incoming data contains integer, float, or double numbers, you can also use
the “sscanf()” function to extract the numbers out. The following example shows
how to read three float numbers from a computer serial port; the numbers are
separated by |.

**
// Example 6.5

#include "mbed.h"

Serial pc(USBTX, USBRX);

int main() {
 float re[3]={1.0,0.0,0.0};
 while(1) {
 if(pc.readable()) {
 char buff [256]="";
 pc.gets(buff, 256);
 pc.printf("%s\n\r", buff);
 sscanf (buff,"%f|%f|%f",&re[0],&re[1],&re[2]);
 }
 pc.printf("%10.3f\t%10.3f\t%10.3f\n\r", re[0],re[1],re[2]);
 }
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™106

Apart from communicating with the computer, you can also communicate with other
devices using a serial port. The following example uses D4 and D5 pins as a serial inter-
face, and sends “Hello World” to the interface. In this case, the baud rate used is 115,200.

**
// Example 6.6

#include "mbed.h"

Serial dev(D4, D5); // Tx and Rx

int main() {
 dev.baud(115200);
 dev.printf("Hello World\n");
}
**

Further Information about Serial Interface

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/digital/
Serial/

6.2  SPI

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication inter-
face specification used for short‐distance communication, primarily in embedded sys-
tems. The interface was developed by Motorola and has become a de facto standard.
Typical applications include Secure Digital (SD) cards and liquid crystal displays (LCD).

SPI devices communicate in full duplex mode using a master–slave architecture with
a single master. The master device originates the frame for reading and writing. Multiple

Exercise 6.2 

Modify the above program so that it can read three integer numbers from computer
serial port; numbers are separated by “ , ”.

Exercise 6.3 

Modify the above program so that it can read characters from a computer serial port,
send them to the device serial interface (D4, D5), and vice versa.

Exercise 6.4 

Modify the above program so that it can communicate with another FRDM‐K64F board
(or LPC1768 board) through a serial interface (D4, D5).

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/Serial/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/Serial/

Digital Interfaces 107

slave devices are supported through selection with individual slave select (SS) lines, as
shown in Figure 6.1.

To use an SPI interface, you will need two devices, one as the master and one as the
slave. In this example, we will use a FRDM‐K64F board as the master, and a LPC1768
board as the slave.

For the master, from the online compiler, create a new project; call it “FRDM‐K64F_
SPI” and change the “main.cpp” content as shown.

**
// Example 6.7

#include "mbed.h"

SPI spi(PTD2, PTD3, PTD1); // mosi, miso, sclk
DigitalOut cs(PTD0);

int main() {
 cs = 1;

 spi.format(8,3);
 spi.frequency(1000000);

 cs = 0;

 spi.write(0x8F);

 int whoami = spi.write(0x00);
 printf("WHOAMI register = 0x%X\n", whoami);

 cs = 1;
}
**

Figure 6.1  The SPI communication protocol. (Source: https://en.wikipedia.org/wiki/Serial_Peripheral_
Interface_Bus#/media/File:SPI_three_slaves.svg)

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#/media/File:SPI_three_slaves.svg
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#/media/File:SPI_three_slaves.svg

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™108

For the slave, from the online compiler, create a new project; call it “LPC1768_
SPISlave” and change the “main.cpp” content as shown.

**
// Example 6.8

#include "mbed.h"

SPISlave device(p5, p6, p7, p8); // mosi, miso, sclk, ssel

int main() {
 device.reply(0x00); // Prime SPI with first reply
 while(1) {
 if(device.receive()) {
 int v = device.read(); // Read byte from master
 v = (v + 1) % 0x100; // Add one to it, modulo 256
 device.reply(v); // Make this the next reply
 }
 }
}
**

Further Information about SPI Interface:

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/
digital/SPI/

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/digital/
SPISlave/

6.3  I2C

The I2C (Inter‐Integrated Circuit) is a multi‐master, multi‐slave, single‐ended, serial
computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is
typically used for attaching lower‐speed peripheral ICs to processors and microcon-
trollers in short‐distance, intra‐board communication. I2C uses only two bidirectional
open‐drain lines, serial data acquisition (SDA) and serial clock line (SCL), pulled up
with resistors. Typical voltages used are +5 V or +3.3 V, although systems with other
voltages are permitted, as shown in Figure 6.2.

Exercise 6.5 

Modify the above two programs so that the SPI server can read the digital input pin D0
and send a value to SPI clients.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPI/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPI/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPISlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/SPISlave/

Digital Interfaces 109

To use the I2C interface, you will need two devices, one as the master and one as the
slave. In this example, we will use a FRDM‐K64F board as the master and an LPC1768
board as the slave.

For the master, from the online compiler, create a new project; call it “FRDM‐K64F_
I2C” and change the “main.cpp” content as shown.

**
// Example 6.9

#include "mbed.h"

// Read temperature from LM75BD

I2C i2c(PTD25, PTD24); //SDA and SCL

const int addr = 0x90;

int main() {
 char cmd[2];
 while (1) {
 cmd[0] = 0x01;
 cmd[1] = 0x00;
 i2c.write(addr, cmd, 2);

 wait(0.5);

 cmd[0] = 0x00;
 i2c.write(addr, cmd, 1);
 i2c.read(addr, cmd, 2);

 float tmp = (float((cmd[0]≪8)|cmd[1]) / 256.0);
 printf("Temp = %.2f\n", tmp);
 }
}
**

Figure 6.2  The I2C communication protocol. (Source: https://en.wikipedia.org/wiki/I%C2%B2C#/
media/File:I2C.svg)

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™110

For the slave, from the online compiler, create a new project; call it “LPC1768_
SPISlave” and change the “main.cpp” content as shown.

**
// Example 6.10

#include <mbed.h>

I2CSlave slave(p9, p10); //SDA and SCL

int main() {
 char buf[10];
 char msg[] = "Slave!";

 slave.address(0xA0);
 while (1) {
 int i = slave.receive();
 switch (i) {
 case I2CSlave::ReadAddressed:
 slave.write(msg, strlen(msg) + 1); // Includes null char
 break;
 case I2CSlave::WriteGeneral:
 slave.read(buf, 10);
 printf("Read G: %s\n", buf);
 break;
 case I2CSlave::WriteAddressed:
 slave.read(buf, 10);
 printf("Read A: %s\n", buf);
 break;
 }
 for(int i = 0; i < 10; i++) buf[i] = 0; // Clear buffer
 }
}
**

Exercise 6.6 

Modify the above two programs so that the I2C server can send 10 data to I2C clients.

Further Information about I2C Interface:

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/5.1/APIs/interfaces/
digital/I2C/

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2C/

Digital Interfaces 111

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/5.1/APIs/interfaces/digital/
I2CSlave/

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/
digital/I2C/

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/digital/
I2CSlave/

6.4  CAN

CAN or controller area network is a bus standard that allows microcontrollers and
devices to communicate with each other without going through a host computer. It is a
message‐based protocol, designed originally for multiplex electrical wiring within auto-
mobiles, but is also used in many other contexts. Development of the CAN bus started
in 1983 at Robert Bosch GmbH.

CAN is a multi‐master serial bus standard for connecting electronic control units
[ECUs] also known as nodes. Two or more nodes are required on the CAN network
to communicate. The complexity of the node can range from a simple I/O device up
to an embedded computer with a CAN interface and sophisticated software. The
node may also be a gateway allowing a standard computer to communicate over a
USB or Ethernet port to the devices on a CAN network. All nodes are connected to
each other through a two‐wire bus. The wires are 120 Ω nominal twisted pair, as
shown in Figure 6.3.

The following example sends a counter from one CAN bus (can1) and listens for a
packet on the other CAN bus (can2). Each bus controller should be connected to a CAN
bus transceiver. These should be connected together at a CAN bus. In this example, the
Ticker interface is used to set up a recurring interrupt to repeatedly call the “send()”
function at a specified rate. More details about the Ticker interface can be found in
Chapter 9, section 9.2.

Figure 6.3  The CAN communication protocol. (Source: https://en.wikipedia.org/wiki/CAN_bus#/
media/File:CAN_ISO11898‐2_Network.png)

https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/5.1/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2C/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2CSlave/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/I2CSlave/
https://en.wikipedia.org/wiki/CAN_bus#/media/File:CAN_ISO11898-2_Network.png
https://en.wikipedia.org/wiki/CAN_bus#/media/File:CAN_ISO11898-2_Network.png

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™112

**
// Example 6.11

#include "mbed.h"

Ticker ticker;
DigitalOut led1(LED1);
DigitalOut led2(LED2);
CAN can1(p9, p10);
CAN can2(p30, p29);
char counter = 0;

void send() {
 printf("send()\n");
 if(can1.write(CANMessage(1337, &counter;, 1))) {
 printf("wloop()\n");
 counter++;
 printf("Message sent: %d\n", counter);
 }
 led1 = !led1;
}

int main() {
 printf("main()\n");
 ticker.attach(&send;, 1);
 CANMessage msg;

 while(1) {
 printf("loop()\n");
 if(can2.read(msg)) {
 printf("Message received: %d\n", msg.data[0]);
 led2 = !led2;
 }
 wait(0.2);
 }
}
**

Exercise 6.7 

Modify the above program so that it reads the analog pin A0, and sends the value
to CAN1.

Digital Interfaces 113

Further Information about the CAN Interface:

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/interfaces/
digital/CAN/

6.5  Summary

This chapter introduces digital interfaces, such as serial, SPI, I2C, and CAN, which are
used by microcontrollers to communicate directly with other devices.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/CAN/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/interfaces/digital/CAN/

115

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

7

I never did a day’s work in my life. It was all fun.
‐ Thomas A. Edison

7.1  Ethernet

The FRDM‐K64F development board comes with an onboard Ethernet socket. So the
simplest way to connect to the Internet is through the Ethernet.

From the Arm® Mbed™ online compiler, create a new program “FRDM‐F64F_
NetworkInfo” (Figure 7.1). Copy the following code into “main.cpp.”

**
// Example 7.1

#include "mbed.h"
#include "EthernetInterface.h"
#include "rtos.h"

EthernetInterface eth;

int main()
{
 eth.init();
 eth.connect();
 printf(" IP address: %s \r\n",eth.getIPAddress());
 printf(" Network Mask: %s \r\n",eth.getNetworkMask());
 printf(" MAC address: %s \r\n",eth.getMACAddress());
 printf(" Gateway address: %s \r\n",eth.getGateway());

 while(1){};
}
**

Networking and Communications

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™116

This example illustrates how to initialize the Ethernet, connect the Ethernet, and get
network information such as IP address, subnet mask, MAC address, and gateway
address.

In this program, you will need to import two libraries:

1)	 “EthernetInterface” library (https://os.mbed.com/users/mbed_official/code/
EthernetInterface/)

2)	 “mbed‐rtos” library (https://os.mbed.com/users/mbed_official/code/mbed‐rtos/)

To import a library into a program, just click the “Import!” button on top of the
online compiler. Search for “EthernetInterface” library and click the “Import!” button
(Figure 7.2). A pop‐up confirmation window will appear. Make sure all the information
is correct, then click the “Import!” button (Figure 7.3). Figure 7.4 shows how to search
and import “mbed‐rtos” library. More details about import and export libraries and
programs will be available in Chapter 10.

Please note that as of this writing, there are two compilation errors in the latest
“EthernetInterface” library (revision 54:183490eb1b4a, 14 Jan 2017), as shown in
Figure 7.5.

Just comment out the two lines to solve the errors (Figure 7.6).

Figure 7.1  The EthernetInterface program.

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

Networking and Communications 117

Figure 7.2  Import “EthernetInterface” library into the program.

Figure 7.3  Import Library pop‐up window.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™118

Figure 7.4  Import “mbed‐rtos” library into the program.

Figure 7.5  The compilation errors in the “EthernetInterface” library.

Networking and Communications 119

Further Information about Ethernet

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/communication/
ethernet/

7.2  Ethernet Web Client and Web Server

World Wide Web is still the most important application on the Internet. With an
Ethernet socket, it is easy to turn an FRDM‐K64F board into a web client or a web
server. Following is a quick example of a simple Ethernet HTTP (hyper text transfer
protocol) client, i.e., web client, program. It connects to the website www.google.co.uk,
then retrieves the web page information. Again, you will need both the “EthernetInterface”
library and “rmbed‐rtos” library.

Figure 7.6  The correction of compilation errors by commenting out the two lines in the
“EthernetInterface” library.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/ethernet/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/ethernet/
http://www.google.co.uk

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™120

**
// Example 7.2

#include "mbed.h"
#include "EthernetInterface.h"

EthernetInterface eth;
TCPSocketConnection sock;

int main() {
 eth.init();
 eth.connect();
 printf("IP Address is %s\n", eth.getIPAddress());

 sock.connect("www.google.co.uk", 80);

 char request[] = "GET / HTTP/1.0\n\n";
 sock.send_all(request, sizeof(request)‐1);

 char buffer[1024];
 int ret;
 while (true) {
 ret = sock.receive(buffer, sizeof(buffer)‐1);
 if (ret <= 0)
 break;
 buffer[ret] = ’\0’;
 printf("Received %d chars from server:\n%s\n", ret, buffer);
 }

 sock.close();

 eth.disconnect();

 while(1) {}
}
**

Following is a simple HTTP server, i.e., web server, which reads the analog input A0
(or P19 for LPC1768) and prints its value to the client. Figure 7.7 shows the web browser
display of the server.

Networking and Communications 121

**
// Example 7.3

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 80
EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p19);
#endif

int main()
{
 eth.init();
 eth.connect();
 printf(" IP address: %s \r\n",eth.getIPAddress());

 server.bind(PORT);
 server.listen();

 while(true){
 int32_t status = server.accept(client);

 if (status>=0)
 {
 char msg[1024] = {};
 sprintf(msg,"A0 = %0.1f \n\r\n\r", (float) ain.read());
 client.send(msg,strlen(msg));
 client.close();
 }
 }
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™122

Following is a slightly complicated version HTTP server, which uses a function “web_
server()” to provide web information. The “web_server()” function sets up the HTTP
server, accepts the HTTP client connection, prints the data sent by the client, and prints
the analog input A0 value (or P19 for LPC1768) in a HTML format, including header
and body, to the client.

**
// Example 7.4

#include "mbed.h"
#include "EthernetInterface.h"
#include <stdio.h>
#include <string.h>
#include "rtos.h"

#define PORT 80

EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p19);
#endif

Figure 7.7  The web browser display.

Networking and Communications 123

void web_server(void const *args)
{
 server.bind(PORT);
 server.listen();

 while(true){
 int32_t status = server.accept(client);

 if (status>=0)
 {
 char buffer[1024] = {};
 int n= client.receive(buffer, 1023);
 printf("Received Data:
%d\n\r\n\r%.*s\n\r",strlen(buffer),strlen(buffer),buffer);
 char Body[1024] = {};
 sprintf(Body,"<html><title></title><body><h1>A0=%0.1f
</h1></body></html>\n\r\n\r", (float) ain.read());
 char Header[256] = {};
 sprintf(Header,"HTTP/1.1 200 OK\n\rContent‐Length:
%d\n\rContent‐Type: text/html\n\rConnection:
Keep‐Alive\n\r\n\r",strlen(Body));
 client.send(Header,strlen(Header));
 client.send(Body,strlen(Body));

 client.close();
 }
 }
}
int main() {
 EthernetInterface eth;
 eth.init();
 eth.connect();
 printf("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

 web_server("");
 while(1){}
}
**

Further Information about the Web Client and Server

https://os.mbed.com/cookbook/HTTP‐Serverhttps://os.mbed.com/cookbook/
Networking

Exercise 7.1 

Modify the above program so that it can read the analog inputs A0, A1, A2 and display
the values as a table in HTTP body message.

https://os.mbed.com/cookbook/HTTP-Serverhttps://os.mbed.com/cookbook/Networking
https://os.mbed.com/cookbook/HTTP-Serverhttps://os.mbed.com/cookbook/Networking

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™124

7.3  TCP Socket and UDP Socket

With Arm® Mbed™ you can also provide simple and consistent communications
using TCP (File Transfer Protocol) and UDP (User Datagram Protocol) sockets.
Communications using TCP sockets are connection oriented, more reliable, but more
complex and slower. Communications using UDP is connectionless, and therefore
much simpler, faster, but less reliable.

The following example is a simple TCP socket server. It receives data from a TCP
client and echoes it back. Again, you will need both “EthernetInterface” library and
“rmbed‐rtos” library.

**
// Example 7.5

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 7

EthernetInterface eth;
TCPSocketServer server;
TCPSocketConnection client;

int main (void) {
 eth.init();
 eth.connect();
 printf("\nServer IP Address is %s\n", eth.getIPAddress());

 server.bind(PORT);
 server.listen();

 while (true) {
 server.accept(client);
 client.set_blocking(false, 1500); // Timeout after (1.5)s

 printf("Connection from: %s\n", client.get_address());
 char buffer[256];
 while (true) {
 int n = client.receive(buffer, sizeof(buffer));
 if (n <= 0) break;

 // print received message to terminal
 buffer[n] = ’\0’;
 printf("Received message from Client :’%s’\n",buffer);

 // Echo received message back to client
 client.send_all(buffer, n);
 if (n <= 0) break;

Networking and Communications 125

 }

 client.close();
 }
}
**

Following is a corresponding TCP Echo Client program. In this code, you will need to
change the server IP address "x.x.x.x" to correct server address.

**
// Example 7.6

#include "mbed.h"
#include "EthernetInterface.h"

const char* SERVER = "x.x.x.x";
const int PORT = 7;

EthernetInterface eth;
TCPSocketConnection socket;

int main() {
 eth.init();
 eth.connect();
 printf("\nClient IP Address is %s\n", eth.getIPAddress());

 while (socket.connect(SERVER, PORT) < 0) {
 wait(1);
 }
 printf("Connected to Server at %s\n",SERVER);

 // Send message to server
 char msg[] = "Hello World";
 socket.send_all(msg, sizeof(msg) ‐ 1);

 // Receive message from server
 char buff[256];
 int n = socket.receive(buf, 256);
 buff[n] = ’\0’;
 printf("Received message from server: ’%s’\n", buff);

 socket.close();
 eth.disconnect();

 while(true) {}
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™126

The following example is a simple UDP Echo Server; again, it receives data from a
UDP client and echoes it back. It also will need both “EthernetInterface” library and
“rmbed‐rtos” library.

**
// Example 7.7

#include "mbed.h"
#include "EthernetInterface.h"

#define PORT 7

EthernetInterface eth;
UDPSocket server;
Endpoint client;

int main (void) {
 eth.init();
 eth.connect();
 printf("\nServer IP Address is %s\n", eth.getIPAddress());

 server.bind(PORT);

 char buffer[256];
 while (true) {
 printf("\nWaiting for UDP packet…\n");
 int n = server.receiveFrom(client, buffer, sizeof(buffer));
 buffer[n] = ’\0’;

 server.sendTo(client, buffer, n);
 }
}
**

Following is the corresponding UDP Echo Client. Again, in this code, you will need to
change the server IP address "x.x.x.x" to the correct server address.

Exercise 7.2 

Modify the above TCP client/server programs so that the server receives the message
from the client, changes it to uppercase, then echoes it back to the client.

Networking and Communications 127

**
// Example 7.8

#include "mbed.h"
#include "EthernetInterface.h"

const char* SERVER = "x.x.x.x";
const int PORT = 7;

EthernetInterface eth;
UDPSocket sock;
Endpoint echo_server;

int main() {
 eth.init();
 eth.connect();

 sock.init();
 echo_server.set_address(SERVER, PORT);

 char msg[] = "Hello World";
 sock.sendTo(echo_server, msg, sizeof(msg));

 char buffer[256];
 int n = sock.receiveFrom(echo_server, buffer, sizeof(buffer));

 buffer[n] = ’\0’;
 printf("Received message from server: ’%s’\n", buffer);

 sock.close();
 eth.disconnect();
 while(1) {}
}
**

Exercise 7.3 

Modify the above UDP client/server programs so that the server reads the digital pin
D0 and sends the value to the client.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™128

Further Information about the Socket

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/communication/
network_sockets/

7.4  WebSocket

The WebSocket provides full‐duplex, bidirectional communications between a Web
server and Web clients. Following is a WebSocket example code that simply sends
a “Hello World” message every 2 seconds to a WebSocket echo server (ws://echo.
websocket.org).

In this program, you will need to import three libraries:

1)	 “EthernetInterface” library (https://os.mbed.com/users/mbed_official/code/
EthernetInterface/)

2)	 “mbed‐rtos” library (https://os.mbed.com/users/mbed_official/code/mbed‐rtos/)
3)	 “WebSocketClient” library (https://os.mbed.com/users/samux/code/WebSocketClient/).

**
// Example 7.9

#include "mbed.h"
#include "EthernetInterface.h"
#include "Websocket.h"

EthernetInterface eth;

int main() {
 eth.init();
 eth.connect();
 printf("IP Address is %s\n\r", eth.getIPAddress());

 Websocket ws("ws://echo.websocket.org");
 ws.connect();

 while (1) {
 ws.send("Hello World");
 wait(2.0);
 }
}
**

Exercise 7.4 

Modify the above program so that it can continuously read the temperature sensor
values and send it to the WebSocket server.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/network_sockets/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/network_sockets/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/
https://os.mbed.com/users/samux/code/WebSocketClient/

Networking and Communications 129

Following is a revised WebSocket example code that sends one “Hello World”
message to a WebSocket echo server (ws://echo.websocket.org) and gets the echoed
message back.

**
// Example 7.10

#include "mbed.h"
#include "EthernetInterface.h"
#include "Websocket.h"

EthernetInterface eth;

int main()
{

 eth.init();
 eth.connect();

 printf("IP Address: %s\n", eth.getIPAddress());

 Websocket ws("wss://echo.websocket.org");
 ws.connect();

 char str[100];
 sprintf(str, "Hello World");
 ws.send(str);

 memset(str, 0, 100);
 wait(1.0f);

 if (ws.read(str)) {
 printf("rcv’d: %s\n", str);
 }

 ws.close();
 eth.disconnect();

 while(true);
}
**

You can also build your own WebSocket server using Python or Java, as illustrated in
the following Arm® Mbed™ Cookbook site (Figures 7.8 to 7.10).

https://os.mbed.com/cookbook/Websockets‐Server

https://os.mbed.com/cookbook/Websockets-Server

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™130

Figure 7.8  The WebSocket Server page on mbed Cookbook website.

Figure 7.9  The WebSocket Client section on mbed Cookbook website.

Networking and Communications 131

Further Information about the WebSocket

https://os.mbed.com/cookbook/Websockets
https://os.mbed.com/components/HTML5‐Websockets/
https://os.mbed.com/cookbook/Websockets‐Server

7.5  WiFi

WiFi is another way to get the FRDM‐K64F board connected to the Internet. In
this example, we will use the ESP8266 WiFi module. Figure 7.11 shows the pin
connections.

Here is a simple WiFi program, which connects to an access point and displays the IP
address received. In this program, you will need to replace the ("xxx", "ppp") with your
own access point username and password. The code should work for both FRDM‐K64F
and LPC 1768 boards. You will also need to import the “ESP8266” library:

https://os.mbed.com/users/quevedo/code/ESP8266/

Figure 7.10  The WebSocket Echo Server ‐Python section on mbed Cookbook website.

https://os.mbed.com/cookbook/Websockets
https://os.mbed.com/components/HTML5-Websockets/
https://os.mbed.com/cookbook/Websockets-Server
https://os.mbed.com/users/quevedo/code/ESP8266/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™132

**
// Example 7.11

#include "mbed.h"
#include "ESP8266.h"

Serial pc(USBTX,USBRX);
#if defined(TARGET_K64F)
 ESP8266 wifi(PTC17, PTC16, 115200); // baud rate for wifi
#elif defined(TARGET_LPC1768)
 ESP8266 wifi(P9, P10, 115200); // baud rate for wifi
#endif

char snd[255],rcv[1000];

int main () {

 pc.baud(115200);
 pc.printf("SET mode to AP\r\n");
 wifi.SetMode(1); // set ESP mode to 1
 wifi.RcvReply(rcv, 1000); //receive a response from ESP
 pc.printf("%s",rcv); //Print the response onscreen
 pc.printf("Connecting to AP\r\n");

Figure 7.11  The schematic circuit diagram of the FRDM‐K64F board and WiFi module (ESP8266).

Networking and Communications 133

 wifi.Join("xxx", "ppp"); // Your wifi username & Password
 wifi.RcvReply(rcv, 1000); //receive a response from ESP
 pc.printf("%s", rcv); //Print the response onscreen
 wait(8); //wait for response from ESP
 pc.printf("Getting IP\r\n"); //get IP address from the connected AP
 wifi.GetIP(rcv); //receive an IP address from the AP
 pc.printf("%s", rcv);

 while (1) {

 }//While
} //main
**

Following is an improved version of the program, which brings up the ESP8266 WiFi
network interface, and connects to a website:

**
// Example 7.12

#include "mbed.h"
#include "ESP8266.h"
#include "EthernetInterface.h"
#include "HTTPClient.h"

Serial pc(USBTX,USBRX);
#if defined(TARGET_K64F)
 ESP8266 wifi(PTC17, PTC16, 115200); // baud rate for wifi
#elif defined(TARGET_LPC1768)
 ESP8266 wifi(P9, P10, 115200); // baud rate for wifi
#endif

char snd[255],rcv[1000];

void getpage(void);
HTTPClient http;

int main () {

 pc.baud(115200);
 pc.printf("SET mode to AP\r\n");
 wifi.SetMode(1); // set ESP mode to 1
 wifi.RcvReply(rcv, 1000); //receive a response from ESP
 pc.printf("%s",rcv); //Print the response onscreen
 pc.printf("Connecting to AP\r\n");
 wifi.Join("xxx", "ppp"); // Your wifi username & Password

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™134

 wifi.RcvReply(rcv, 1000); //receive a response from ESP
 pc.printf("%s", rcv); //Print the response onscreen
 wait(8); //wait for response from ESP
 pc.printf("Getting IP\r\n"); //get IP address from the connected AP
 wifi.GetIP(rcv); //receive an IP address from the AP
 pc.printf("%s", rcv);
 getpage();

 while (1) {

 }//While
} //main

void getpage()
{
 TCPSocketConnection sock;
 sock.connect("www.google.co.uk", 80);

 char request[] = "GET / HTTP/1.0\n\n";
 sock.send_all(request, sizeof(request)‐1);

 char buffer[1024];
 int ret;
 while (true) {
 ret = sock.receive(buffer, sizeof(buffer)‐1);
 if (ret <= 0)
 break;
 buffer[ret] = ‘\0’;
 printf("Received %d chars from server:\n%s\n", ret, buffer);
 }

 sock.close();
}
**

Further Information about WiFi

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/communication/wifi/
https://os.mbed.com/users/4180_1/notebook/using‐the‐esp8266‐with‐the‐mbed‐

lpc1768/
https://os.mbed.com/teams/ESP8266/code/mbed‐os‐example‐esp8266/

Exercise 7.5 

Modify the above program so that it can send “Hello World” to a WebSocket server.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/communication/wifi/
https://os.mbed.com/users/4180_1/notebook/using-the-esp8266-with-the-mbed-lpc1768/
https://os.mbed.com/users/4180_1/notebook/using-the-esp8266-with-the-mbed-lpc1768/
https://os.mbed.com/teams/ESP8266/code/mbed-os-example-esp8266/

Networking and Communications 135

https://github.com/armmbed/esp8266‐driver/
https://os.mbed.com/teams/ESP8266/code/ESP8266_MQTT_HelloWorld/

7.6  Summary

This chapter introduces the networking and communication facilities including the
Ethernet, web client, web server, TCP and UDP socket, WebSockets, and WiFi.

https://github.com/armmbed/esp8266-driver/
https://os.mbed.com/teams/ESP8266/code/ESP8266_MQTT_HelloWorld/

137

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

8

I have not failed. I’ve just found 10,000 ways that won’t work.
‐ Thomas A. Edison

Signal processing is important for many applications. With the power of modern com-
puters, many signal processing functions can now be done digitally. In this chapter we
will illustrate how to use the Arm® Mbed™‐DSP library (https://developer.mbed.org/
users/mbed_official/code/mbed‐dsp/) for digital signal processing and control.

8.1  Low‐Pass Filter

On the Arm® Mbed™ website, there is an excellent tutorial on how to design and imple-
ment a low‐pass FIR (finite impulse response) filter. We will basically follow the exam-
ple and extend it to high‐pass filter and band‐pass/stop filter.

https://os.mbed.com/handbook/Matlab‐FIR‐Filter
First, we need to use MATLAB software (www.mathworks.com) to create a digital

filter. Digital filter design is a complex topic as it involves complicated math. MATLAB
has a Signal Processing Toolbox that can make digital filter design much simpler. FIR
(finite impulse response) filters and IIR (infinite impulse response) filters are the com-
monly used digital filters. The FIR filter is used here as it requires no feedback loop and
is more stable.

Following is the MATLAB code (modified from https://os.mbed.com/handbook/
Matlab‐FIR‐Filter) that creates a low‐pass filter using “fir1” function. The sampling
rate is 48,000 Hz, Nyquist frequency is half of the sampling frequency, 24,000 Hz, and
cutoff frequency is 6000 Hz. The “fir1” function creates a 28th order digital filter in a
normalized frequency range (0 to 1), with 1 representing the Nyquist frequency, i.e.,
24,000 Hz. The normalized cutoff frequency will therefore be 6000 / 24,000 = –¼,
or 0.25.

Digital Signal Processing and Control

https://developer.mbed.org/users/mbed_official/code/mbed-dsp/
https://developer.mbed.org/users/mbed_official/code/mbed-dsp/
https://os.mbed.com/handbook/Matlab-FIR-Filter
http://www.mathworks.com
https://os.mbed.com/handbook/Matlab-FIR-Filter
https://os.mbed.com/handbook/Matlab-FIR-Filter

138 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

**
%Example 8.1
%Modified from https://os.mbed.com/handbook/Matlab‐FIR‐Filter

sample_rate = 48000;

% Choose filter cutoff frequency (6 kHz)
cutoff_hz = 6000;

% Normalize cutoff frequency (wrt Nyquist frequency)
nyq_freq = sample_rate / 2;
cutoff_norm = cutoff_hz / nyq_freq;

% FIR filter order (i.e., number of coefficients - 1)
order = 28;

% Create lowpass FIR filter
fir_coeff = fir1(order, cutoff_norm);

% Analyze the filter using the Filter Visualization Tool
fvtool(fir_coeff, 'Fs', sample_rate)
**

Figure 8.1 shows the FIR low‐pass filter and its 29 (order +1) coefficients. We can
now use these coefficients in mbed program to implement a low‐pass digital filter.

fir_coeff =
-0.0018 -0.0016 0.0000 0.0037 0.0081 0.0085 -0.0000 -0.0174
-0.0341 -0.0334 0.0000 0.0676 0.1522 0.2229 0.2505 0.2229
 0.1522 0.0676 0.0000 -0.0334 -0.0341 -0.0174 -0.0000 0.0085
 0.0081 0.0037 0.0000 -0.0016 -0.0018

0 5 10 15 20

−70

−60

−50

−40

−30

−20

−10

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 8.1  The FIR low‐pass filter’s coefficients (top) and the plot (bottom). Cutoff frequency is 6000
Hz, and Nyquest frequency is 24,000 Hz.

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control 139

Following is the mbed example that uses above FIR low‐pass filter coefficients. It first
generates a mixed signal (32 × 20 points) using 1000 Hz sinusoid and 15,000 Hz sinu-
soid, then uses a FIR low‐pass filter to filter out the 15,000 Hz. Finally, it prints both
the original signal and filtered signal to a computer through a virtual COM port. In
Figure 8.2, the filtered signal was shifted 3 V upward so that we can view the two signals
separately.

In this program, you will need the mbed‐DSP library:
https://os.mbed.com/users/mbed_official/code/mbed‐dsp/

**
//Example 8.2
//Modified from https://os.mbed.com/handbook/Matlab‐FIR‐Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK_SIZE (32)
#define NUM_BLOCKS (20)
#define TEST_LENGTH_SAMPLES (BLOCK_SIZE * NUM_BLOCKS)

Figure 8.2  The output of the program using Arduino Serial Plotter, with the original mixed signal at
the bottom and filtered signal at the top.

https://os.mbed.com/users/mbed_official/code/mbed-dsp/
https://os.mbed.com/handbook/Matlab-FIR-Filter

140 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

#define SAMPLE_RATE (48000)

float32_t expected_output[TEST_LENGTH_SAMPLES];
float32_t output[TEST_LENGTH_SAMPLES];

#define NUM_TAPS 29
/* FIR Coefficients buffer generated using fir1() MATLAB function:
fir1(28, 6/24) */
//Low-pass filter coefficients
const float32_t firCoeffs32[NUM_TAPS] = {
 -0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f,
 +0.0085302217f, -0.0000000000f, -0.0173976984f, -0.0341458607f, -0.0333591565f,
 +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f,
 +0.2229246956f, +0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f,
 -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f, +0.0080754303f,
 +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f
};

int main() {
 Sine_f32 sine_1KHz(1000, SAMPLE_RATE, 1.0);
 Sine_f32 sine_15KHz(15000, SAMPLE_RATE, 0.5);
 FIR_f32<NUM_TAPS> fir(firCoeffs32);

 float32_t buffer_a[BLOCK_SIZE];
 float32_t buffer_b[BLOCK_SIZE];
 for (float32_t *sgn=output; sgn<(output+TEST_LENGTH_SAMPLES);
sgn += BLOCK_SIZE) {
 sine_1KHz.generate(buffer_a); // Generate a 1KHz sine wave
 sine_15KHz.process(buffer_a, buffer_b); // Add a 15KHz sine wave
 fir.process(buffer_b, sgn); // FIR low-pass filter: 6KHz cutoff
 for (int i=0;i<BLOCK_SIZE;i++)
 {
printf("%0.3f\t%0.3f\t%0.3f\n\r",buffer_a[i],(buffer_b[i]+3),(sgn[i]+6));
 }
 }

}
**

Figure 8.2 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and the filtered signal at the top. As we can see, after
filtering, only the 1000 Hz signal remains.

Digital Signal Processing and Control 141

8.2  High‐Pass Filter

Similarly, we can also implement the high‐pass filter. All you need to do is to modify
Example 8.1 MATLAB code, and change “fir1” function line from:

fir_coeff = fir1(order, cutoff_norm);

to

fir_coeff = fir1(order, cutoff_norm, ‘high’);

Figure 8.3 shows the corresponding FIR high‐pass filter and its 29 (order +1) coeffi-
cients. We can now use these coefficients in mbed program to implement a low‐pass
digital filter.

fir_coeff =
0.0018 0.0016 -0.0000 -0.0037 -0.0080 -0.0085 -0.0000 0.0173
0.0340 0.0332 -0.0000 -0.0674 -0.1516 -0.2221 0.7487 -0.2221
-0.1516 -0.0674 -0.0000 0.0332 0.0340 0.0173 -0.0000 -0.0085
-0.0080 -0.0037 -0.0000 0.0016 0.0018

Modify the Example 8.2, and change the FIR coefficients using the new values, as
shown below.

0 5 10 15 20
−70

−60

−50

−40

−30

−20

−10

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 8.3  The FIR high‐pass filter’s coefficients (top) and the plot (bottom). Cutoff frequency is
6000 Hz, and Nyquest frequency is 24,000 Hz.

142 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

**
//Example 8.3
//Modified from https://os.mbed.com/handbook/Matlab‐FIR‐Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK_SIZE (32)
#define NUM_BLOCKS (20)
#define TEST_LENGTH_SAMPLES (BLOCK_SIZE * NUM_BLOCKS)

#define SAMPLE_RATE (48000)

float32_t expected_output[TEST_LENGTH_SAMPLES];
float32_t output[TEST_LENGTH_SAMPLES];

#define NUM_TAPS 29
/* FIR Coefficients buffer generated using fir1() MATLAB function:
fir1(28, 6/24,'high') */
//high-pass filter coefficients
const float32_t firCoeffs32[NUM_TAPS] = {
 0.0018f, 0.0016f, -0.0000f, -0.0037f, -0.0080f, -0.0085f,
 -0.0000f, 0.0173f, 0.0340f, 0.0332f, -0.0000f, -0.0674f,
 -0.1516f, -0.2221f, 0.7487f, -0.2221f, -0.1516f, -0.0674f,
 -0.0000f, 0.0332f, 0.0340f, 0.0173f, -0.0000f, -0.0085f,
 -0.0080f, -0.0037f, -0.0000f, 0.0016f, 0.0018f
};

int main() {
 Sine_f32 sine_1KHz(1000, SAMPLE_RATE, 1.0);
 Sine_f32 sine_15KHz(15000, SAMPLE_RATE, 0.5);
 FIR_f32<NUM_TAPS> fir(firCoeffs32);

 float32_t buffer_a[BLOCK_SIZE];
 float32_t buffer_b[BLOCK_SIZE];
 for(float32_t *sgn=output; sgn<(output+TEST_LENGTH_SAMPLES); sgn +=
BLOCK_SIZE)
 {
 sine_1KHz.generate(buffer_a); // Generate a 1KHz sine wave
 sine_15KHz.process(buffer_a, buffer_b); // Add a 15KHz sine wave
 fir.process(buffer_b, sgn); // FIR low-pass filter: 6KHz cutoff
 for (int i=0;i<BLOCK_SIZE;i++)
 {
 printf("%0.3f\t%0.3f\t%0.3f\n\r",buffer_a[i],(buffer_b[i]+3),
(sgn[i]+6));
 }
 }

}
**

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control 143

Figure 8.4 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and filtered signal at the top. As we can see this
time, after filtering, only 15,000 Hz signal remained.

8.3  Band‐Pass Filter

For the band‐pass filter, modify Example 8.1 MATLAB code and change “fir1” function
line from:

fir_coeff = fir1(order, cutoff_norm);

to

fir_coeff = fir1(order, [0.5 0.7]);

In this case, only the frequencies between 0.5 × 24,000 (12,000 Hz) to 0.7 × 24,000
(16,800 Hz) are allowed to pass; other frequencies are blocked. Figure 8.5 shows the

Figure 8.4  The output of the program using Arduino Serial Plotter, with original mixed signal at the
bottom and filtered signal at the top.

144 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

corresponding FIR band‐pass filter and its 29 (order +1) coefficients. We can now use
these coefficients in mbed program to implement a band‐pass digital filter.

fir_coeff =
-0.0011 -0.0030 0.0033 0.0010 0.0000 -0.0024 -0.0171 0.0332
0.0207 -0.0974 0.0400 0.1292 -0.1494 -0.0622 0.2069 -0.0622
-0.1494 0.1292 0.0400 -0.0974 0.0207 0.0332 -0.0171 -0.0024
0.0000 0.0010 0.0033 -0.0030 -0.0011

Modify Example 8.2 and change the FIR coefficients using the new values, as
shown below.

**
//Example 8.4
//Modified from https://os.mbed.com/handbook/Matlab‐FIR‐Filter

#include "mbed.h"
#include "dsp.h"

#define BLOCK_SIZE (32)
#define NUM_BLOCKS (20)
#define TEST_LENGTH_SAMPLES (BLOCK_SIZE * NUM_BLOCKS)

0 5 10 15 20

−70

−60

−50

−40

−30

−20

−10

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 8.5  The FIR band (12000 Hz to 16800 Hz) pass filter’s coefficients (top) and the plot (bottom).

https://os.mbed.com/handbook/Matlab-FIR-Filter

Digital Signal Processing and Control 145

#define SAMPLE_RATE (48000)

float32_t expected_output[TEST_LENGTH_SAMPLES];
float32_t output[TEST_LENGTH_SAMPLES];

#define NUM_TAPS 29
/* FIR Coefficients buffer generated using fir1() MATLAB function:
fir1(28, [0.5 0.7]) */
//band-pass filter coefficients
const float32_t firCoeffs32[NUM_TAPS] = {
-0.0011f, -0.0030f, 0.0033f, 0.0010f, 0.0000f, -0.0024f, -0.0171f, 0.0332f,
0.0207f, -0.0974f, 0.0400f, 0.1292f, -0.1494f, -0.0622f, 0.2069f, -0.0622f,
-0.1494f, 0.1292f, 0.0400f, -0.0974f, 0.0207f, 0.0332f, -0.0171f, -0.0024f,
0.0000f, 0.0010f, 0.0033f, -0.0030f, -0.0011f,
};
int main() {
 Sine_f32 sine_1KHz(1000, SAMPLE_RATE, 1.0);
 Sine_f32 sine_15KHz(15000, SAMPLE_RATE, 0.5);
 FIR_f32<NUM_TAPS> fir(firCoeffs32);

 float32_t buffer_a[BLOCK_SIZE];
 float32_t buffer_b[BLOCK_SIZE];
 for(float32_t *sgn=output; sgn<(output+TEST_LENGTH_SAMPLES); sgn
+= BLOCK_SIZE)
 {
 sine_1KHz.generate(buffer_a); // Generate a 1KHz sine wave
 sine_15KHz.process(buffer_a, buffer_b); // Add a 15KHz sine wave
 fir.process(buffer_b, sgn); // FIR low-pass filter: 6KHz cutoff
 for (int i=0;i<BLOCK_SIZE;i++)
 {
 printf("%0.3f\t%0.3f\t%0.3f\n\r",buffer_a[i],(buffer_b[i]+3),
(sgn[i]+6));
 }
 }

}
**

Figure 8.6 shows the output of the program using Arduino Serial Plotter, with the
original mixed signal at the bottom and filtered signal at the top. As we can see this
time, after the band‐pass filtering, only 15,000 Hz signal remained.

146 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

8.4  Band‐Stop Filter and Notch Filter

For the band‐stop filter, modify the Example 8.1 MATLAB code, and change “fir1”
function line from:

fir_coeff = fir1(order, cutoff_norm);

to

fir_coeff = fir1(order, [0.5 0.7],’stop’);

In this case, the frequencies between 0.5 × 24,000 (12,000 Hz) to 0.7 × 24000
(16,800 Hz) will be blocked and other frequencies are allowed. When the band
becomes narrow enough, band‐stop filter will become notch filter. Figure 8.7 shows

Figure 8.6  The output of the program using Arduino Serial Plotter, with the original mixed signal at
the bottom and filtered signal at the top.

Digital Signal Processing and Control 147

the corresponding FIR band‐stop filter and its 29 coefficients, which can be used in
mbed program to implement a band‐stop digital filter.

fir_coeff =
0.0011 0.0029 -0.0032 -0.0010 -0.0000 0.0023 0.0165 -0.0320
-0.0200 0.0939 -0.0385 -0.1245 0.1440 0.0599 0.7974 0.0599
0.1440 -0.1245 -0.0385 0.0939 -0.0200 -0.0320 0.0165 0.0023
-0.0000 -0.0010 -0.0032 0.0029 0.0011

Modify the Example 8.2, and change the FIR coefficients using the new values, as
shown below.

**
//Example 8.5
//Modified from https://os.mbed.com/handbook/Matlab‐FIR‐Filter
#include "mbed.h"
#include "dsp.h"

#define BLOCK_SIZE (32)
#define NUM_BLOCKS (20)
#define TEST_LENGTH_SAMPLES (BLOCK_SIZE * NUM_BLOCKS)

#define SAMPLE_RATE (48000)

0 5 10 15 20

−30

−25

−20

−15

−10

−5

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Figure 8.7  The FIR band (12,000 Hz to 16,800 Hz) stop filter’s coefficients (top) and the plot (bottom).

https://os.mbed.com/handbook/Matlab-FIR-Filter

148 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

float32_t expected_output[TEST_LENGTH_SAMPLES];
float32_t output[TEST_LENGTH_SAMPLES];

#define NUM_TAPS 29
/* FIR Coefficients buffer generated using fir1() MATLAB function:
fir1(28, [0.5 0.7],'stop'); */
//band-stop filter coefficients
const float32_t firCoeffs32[NUM_TAPS] = {
0.0011f, 0.0029f, -0.0032f, -0.0010f, -0.0000f, 0.0023f, 0.0165f, -0.0320f,
-0.0200f, 0.0939f, -0.0385f, -0.1245f, 0.1440f, 0.0599f, 0.7974f, 0.0599f,
0.1440f, -0.1245f, -0.0385f, 0.0939f, -0.0200f, -0.0320f, 0.0165f, 0.0023f,
-0.0000f, -0.0010f, -0.0032f, 0.0029f, 0.0011f,
};
int main() {
 Sine_f32 sine_1KHz(1000, SAMPLE_RATE, 1.0);
 Sine_f32 sine_15KHz(15000, SAMPLE_RATE, 0.5);
 FIR_f32<NUM_TAPS> fir(firCoeffs32);

 float32_t buffer_a[BLOCK_SIZE];
 float32_t buffer_b[BLOCK_SIZE];
 �for(float32_t *sgn=output; sgn<(output+TEST_LENGTH_SAMPLES); sgn

+= BLOCK_SIZE)
 {
 sine_1KHz.generate(buffer_a); // Generate a 1KHz sine wave
 sine_15KHz.process(buffer_a, buffer_b); // Add a 15KHz sine wave
 fir.process(buffer_b, sgn); // FIR low-pass filter: 6KHz cutoff
 for (int i=0;i<BLOCK_SIZE;i++)
 {
 printf("%0.3f\t%0.3f\t%0.3f\n\r",buffer_a[i],(buffer_b[i]+3),
(sgn[i]+6));
 }
 }

}
**

Figure 8.8 shows the output of the program using Arduino Serial Plotter, with original
mixed signal at the bottom and filtered signal at the top. As we can see, after filtering,
15,000 Hz signal was stopped, and only 1000 Hz signal remained.

Further Information about the Digital Filter:

http://uk.mathworks.com/help/signal/ref/fir1.html
https://en.wikipedia.org/wiki/Digital_filter

http://uk.mathworks.com/help/signal/ref/fir1.html
https://en.wikipedia.org/wiki/Digital_filter

Digital Signal Processing and Control 149

8.5  Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) and inverse FFT have many important applications. In
this section, we will show how to perform an FFT and inverse FFT using the mbed‐DSP
library:

https://os.mbed.com/users/mbed_official/code/mbed‐dsp/

The following example illustrates how to use “arm_cfft_f32()” to perform complex
FFT. The “arm_cfft_f32()” function can only be used for data lengths of [16, 32, 64, …,
4096], but can be use both for FFT and inverse FFT. Check the above mbed‐DSP library
for the details of the function.

arm_cfft_f32(S, samples, 0, 1); //FFT
arm_cfft_f32(S, samples, 1, 1); //Inverse FFT

Figure 8.8  The output of the program using Arduino Serial Plotter, with original mixed signal at the
bottom and filtered signal at the top.

https://os.mbed.com/users/mbed_official/code/mbed-dsp/

150 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

The program first creates and initializes the complex FFT instance S, according to
the FFT length (FFT_LEN), in this case, is 512 points. Then it generates a mixed frequen-
cies signal using “sin()” function (30 Hz and 100 Hz), the sampling time dt=0.001 second;
therefore, the sampling frequency is Fmax=1/dt=1000Hz, and the Nyquest frequency is
Fmax/2=500Hz. As we want to use real signal, we set the imaginary components equal
to zero. It also prints the original mixed signal to computer through virtual COM at the
same time. It then pause the program for 5 seconds. Finally, it calls “arm_cfft_f32()” to
perform the complex FFT and “arm_cmplx_mag_f32()” to calculate the magnitude of the
transformed signal, and prints the magnitude of the FFT transform signal to computer
through virtual COM.

**
//Example 8.6

#include "mbed.h"
#include "arm_const_structs.h"

const int FFT_LEN = 512;

const static arm_cfft_instance_f32 *S;

float samples[FFT_LEN*2];
float magnitudes[FFT_LEN];

int main()
{
 int32_t i = 0;

 // Init arm_ccft_32
 switch (FFT_LEN)
 {
 case 16:
 S = & arm_cfft_sR_f32_len16;
 break;
 case 32:
 S = & arm_cfft_sR_f32_len32;
 break;
 case 64:
 S = & arm_cfft_sR_f32_len64;
 break;
 case 128:
 S = & arm_cfft_sR_f32_len128;
 break;
 case 256:
 S = & arm_cfft_sR_f32_len256;
 break;

Digital Signal Processing and Control 151

 case 512:
 S = & arm_cfft_sR_f32_len512;
 break;
 case 1024:
 S = & arm_cfft_sR_f32_len1024;
 break;
 case 2048:
 S = & arm_cfft_sR_f32_len2048;
 break;
 case 4096:
 S = & arm_cfft_sR_f32_len4096;
 break;
 }
 double dt=0.001; //time interval
 double f1=30; //frequency 1
 double f2=100; //frequency 2

 for(i = 0; i< FFT_LEN*2; i+=2)
 {
 samples[i] = sin(2*3.1415926*f1*dt*i) + 0.5*sin(2*3.1415926*f2*dt*i) ;
 samples[i+1] = 0;
 printf("%f\r\n",samples[i]);
 }
 wait(5);

 arm_cfft_f32(S, samples, 0, 1); //FFT
 arm_cmplx_mag_f32(samples, magnitudes, FFT_LEN); //FFT Magnitudes

 for(i = 0; i< FFT_LEN/2; i++)
 {
 printf("%f\r\n",magnitudes[i]);
 }

 while(1)
 {

 }
}
**

Again, we can use Arduino Serial Plotter to view the results. As shown in Figure 8.9,
the mixed original signal is at the top, and magnitude of the correspond FFT trans-
formed signal at the bottom. As the FFT transformed signal always contains duplicated
peaks mirrored in the middle, we only need to look at the first half of the plot, when we
can clearly see two frequency peaks (30 Hz and 100 Hz). The peaks values are also
proportional to the original signal amplitude (1.0 and 0.5).

152 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

A very interesting application with FFT is that we can modify the FFT transformed
signal, such as applying a low‐pass filter or a high‐pass filter, then perform the
inverse FFT. In the following example, after FFT, the low‐frequency components
(<50 Hz) was removed by setting them to zero, this is equivalent to applying a high‐
pass filter. The inverse FFT is then performed, by using “arm_cfft_f32(S, samples,
1, 1)” function.

Figure 8.9  The output of the program using Arduino Serial Plotter, with original mixed signal (top)
and the corresponding magnitude of the complex FFT transformed signal (bottom).

Digital Signal Processing and Control 153

**
//Example 8.7

#include "mbed.h"
#include "arm_const_structs.h"

const int FFT_LEN = 512;

const static arm_cfft_instance_f32 *S;

float samples[FFT_LEN*2];
float magnitudes[FFT_LEN];

int main()
{
 int32_t i = 0;

 // Init arm_ccft_32
 switch (FFT_LEN)
 {
 case 16:
 S = & arm_cfft_sR_f32_len16;
 break;
 case 32:
 S = & arm_cfft_sR_f32_len32;
 break;
 case 64:
 S = & arm_cfft_sR_f32_len64;
 break;
 case 128:
 S = & arm_cfft_sR_f32_len128;
 break;
 case 256:
 S = & arm_cfft_sR_f32_len256;
 break;
 case 512:
 S = & arm_cfft_sR_f32_len512;
 break;
 case 1024:
 S = & arm_cfft_sR_f32_len1024;
 break;
 case 2048:
 S = & arm_cfft_sR_f32_len2048;
 break;
 case 4096:
 S = & arm_cfft_sR_f32_len4096;
 break;
 }

154 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

 double dt=0.001; //time interval
 double f1=30; //frequency 1
 double f2=100; //frequency 2

 for(i = 0; i< FFT_LEN*2; i+=2)
 {
 samples[i] = sin(2*3.1415926*f1*dt*i) + 0.5*sin(2*3.1415926*f2*dt*i) ;
 samples[i+1] = 0;
 printf("%f\r\n",samples[i]);
 }
 wait(5);

 arm_cfft_f32(S, samples, 0, 1); //FFT
 arm_cmplx_mag_f32(samples, magnitudes, FFT_LEN); //FFT Magnitudes

 for(i = 0; i< FFT_LEN; i++)
 {
 printf("%f\r\n",magnitudes[i]);
 }
 wait(5);

 double Fmax=1/dt; //maximum frequency
 double df=Fmax/(FFT_LEN*2); //delta frequency
 double Fcut=50/df; //set cutoff frequency as 50 Hz

 //high-pass filter
 for(i = 0; i< FFT_LEN*2; i+=2) //set frequencies <50 Hz to zero
 {
 if ((i<Fcut*2)||(i>(FFT_LEN*2-Fcut*2))){
 samples[i] = 0 ;
 samples[i+1] = 0;
 }
 }

 arm_cmplx_mag_f32(samples, magnitudes, FFT_LEN); //FFT magnitude

 for(i = 0; i< FFT_LEN; i++)
 {
 printf("%f\r\n",magnitudes[i]);
 }
 wait(5);
 arm_cfft_f32(S, samples, 1, 1); //inverse FFT
 for(i = 0; i< FFT_LEN*2; i+=2)
 {
 printf("%f\r\n",samples[i]);
 }

Digital Signal Processing and Control 155

 while(1)
 {

 }
}
**

Figures 8.10 and 8.11 show the corresponding four consequent outputs of the pro-
gram. There was a 5‐second delay between each output. Figure 8.10 (top) shows the
original mixed frequency signal, and Figure 8.10 (bottom) shows its corresponding FFT
frequency domain signal. Figure 8.11 (top) shows the FFT frequency domain signal with
lower frequency components (<50 Hz) removed, and Figure 8.11 (bottom) shows the

Figure 8.10  The output of the program using Arduino Serial Plotter, with original mixed signal (top)
and the corresponding magnitude of the complex FFT transformed signal (bottom).

156 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

corresponding inverse FFT signal. As we can see, only the high‐frequency component
remains in the reconstructed signal.

Similarly, we can also implement a low‐pass filter using FFT. In the following exam-
ple, after FFT, the higher frequency components (>50 Hz) were removed by setting
them to zero. This is equivalent to applying a low‐pass filter. The inverse FFT is then
performed, by using “arm_cfft_f32(S, samples, 1, 1)” function.

Figure 8.11  The output of the program using Arduino Serial Plotter, with high‐pass filtered FFT
transformed signal (top) and the corresponding inverse FFT transformed signal (bottom).

Digital Signal Processing and Control 157

**
//Example 8.8

#include "mbed.h"
#include "arm_const_structs.h"

const int FFT_LEN = 512;

const static arm_cfft_instance_f32 *S;

float samples[FFT_LEN*2];
float magnitudes[FFT_LEN];

int main()
{
 int32_t i = 0;

 // Init arm_ccft_32
 switch (FFT_LEN)
 {
 case 16:
 S = & arm_cfft_sR_f32_len16;
 break;
 case 32:
 S = & arm_cfft_sR_f32_len32;
 break;
 case 64:
 S = & arm_cfft_sR_f32_len64;
 break;
 case 128:
 S = & arm_cfft_sR_f32_len128;
 break;
 case 256:
 S = & arm_cfft_sR_f32_len256;
 break;
 case 512:
 S = & arm_cfft_sR_f32_len512;
 break;
 case 1024:
 S = & arm_cfft_sR_f32_len1024;
 break;
 case 2048:
 S = & arm_cfft_sR_f32_len2048;
 break;
 case 4096:
 S = & arm_cfft_sR_f32_len4096;
 break;
 }

158 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

 double dt=0.001; //time interval
 double f1=30; //frequency 1
 double f2=100; //frequency 2

 for(i = 0; i< FFT_LEN*2; i+=2)
 {
 samples[i] = sin(2*3.1415926*f1*dt*i) + 0.5*sin(2*3.1415926*f2*dt*i) ;
 samples[i+1] = 0;
 printf("%f\r\n",samples[i]);
 }
 wait(5);

 arm_cfft_f32(S, samples, 0, 1); //FFT
 arm_cmplx_mag_f32(samples, magnitudes, FFT_LEN); //FFT Magnitudes

 for(i = 0; i< FFT_LEN; i++)
 {
 printf("%f\r\n",magnitudes[i]);
 }
 wait(5);
 double Fmax=1/dt; //maximum frequency
 double df=Fmax/(FFT_LEN*2); //delta frequency
 double Fcut=50/df; //set cutoff frequency as 50 Hz

 //low-pass filter
 for(i = 0; i< FFT_LEN*2; i+=2) //set frequencies >50 Hz to zero
 {
 if (((i>Fcut*2)&&(i<FFT_LEN))||((i>FFT_LEN) &&(i<(FFT_LEN*2-Fcut*2))))
 {
 samples[i] = 0 ;
 samples[i+1] = 0;
 }
 }

 arm_cmplx_mag_f32(samples, magnitudes, FFT_LEN); //FFT magnitudes

 for(i = 0; i< FFT_LEN; i++)
 {
 printf("%f\r\n",magnitudes[i]);
 }
 wait(5);
 arm_cfft_f32(S, samples, 1, 1); //inverse FFT
 for(i = 0; i< FFT_LEN*2; i+=2)
 {
 printf("%f\r\n",samples[i]);
 }

Digital Signal Processing and Control 159

 while(1)
 {

 }
}
**

Figure 8.12 (top) show the FFT frequency domain signal with higher frequency com-
ponents (>50 Hz) removed, and Figure 8.12 (bottom) the corresponding inverse FFT
signal. As we can see, only the low‐frequency component remains in the reconstructed
signal.

Figure 8.12  The output of the program using Arduino Serial Plotter, with low‐pass filtered FFT
transformed signal (top) and the corresponding inverse FFT transformed signal (bottom).

160 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Further Information about FFT:

https://os.mbed.com/users/jcobb/code/audio_FFT/file/5b7b619f59cd/main.cpp/
https://os.mbed.com/users/tony1tf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/

main.cpp/
https://os.mbed.com/users/cpm219/code/fft_test_k22f/
http://paulbourke.net/miscellaneous/dft/
https://rosettacode.org/wiki/Fast_Fourier_transform

8.6  PID Controller

The PID (proportional–integral–derivative) controller is one of the most commonly
used control mechanism. It is a closed loop controller that can be used in many control
systems, such as temperature control, cruise control etc. A PID controller continuously
calculates an error value e(t) as the difference between a desired set point and a meas-
ured process variable and applies a correction based on proportional, integral, and
derivative terms, as described in the following equations.

	

e Set point Process variable()

() () ()

t

u t K e t K e dt K d
p i

t

d

= −

= + +∫
0

τ
ee t
dt
() 	 Eq. (8.1)

where Kp, Ki, and Kd are the coefficients for the proportional, integral, and derivative
terms, and u(t) is the correction that will be applied to the system.

There are many ways to implement a PID controller in the Arm® Mbed™ device. The
simplest way is to use the mbed‐DSP library:

https://os.mbed.com/users/mbed_official/code/mbed‐dsp/
In this example, variable set_point is the desired value, and variable pv is the measured

process variable, and variable u is corresponding correction through a PWM output
pin. In this case, variable pv is connected to an analog input pin, and a potentiometer is
used to change the variable pv values. The pv values and u values are then printed to
virtual COM port. The (2 + u) shifts the u values up by 2 volts, this helps us to view pv
plots and u plots separately.

**
// Example 8.9

#include "mbed.h"
#include "dsp.h"

#if defined(TARGET_K64F)
 AnalogIn pv(A0);
 PwmOut u(D9);
#elif defined(TARGET_LPC1768)

https://os.mbed.com/users/jcobb/code/audio_FFT/file/5b7b619f59cd/main.cpp/
https://os.mbed.com/users/tony1tf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/main.cpp/
https://os.mbed.com/users/tony1tf/code/KL25Z_FFT_Demo_tony/file/b8c9dffbbe7e/main.cpp/
https://os.mbed.com/users/cpm219/code/fft_test_k22f/
http://paulbourke.net/miscellaneous/dft/
https://rosettacode.org/wiki/Fast_Fourier_transform
https://os.mbed.com/users/mbed_official/code/mbed-dsp/

Digital Signal Processing and Control 161

 AnalogIn pv(p19);
 PwmOut u(p21);
#endif
Serial pc(USBTX, USBRX);

arm_pid_instance_f32 pid;
float set_point = 0.8;

int main()
{
 //Set the initial duty cycle to 0%
 u = 0.0;

 //Initialize the PID instance structure
 pid.Kp = 1.0;
 pid.Ki = 0.002;
 pid.Kd = 5.0;
 arm_pid_init_f32(&pid, 1);

 while(1) {
 float out = arm_pid_f32(&pid, set_point - pv.read());
 //Range limits the output
 if (out < 0.0)
 out = 0.0;
 else if (out >= 1.0)
 out = 1.0;

 //Set the new output duty cycle
 u = out;
 pc.printf("%0.3f\t%0.3f\n\r",pv.read(), (2+u));
 wait(0.1);
 }
}
**

Figure 8.13 shows the output of the program using Arduino Serial Plotter, with the
variable pv value at the bottom and the variable u value at the top. The results show that
as soon as the variable pv value changes, the variable u value changes accordingly. The
apparent oscillations of the u value as it changes can be reduced by adjusting the PID Kp,
Ki, and Kd coefficients.

We can modify the above example to make it more flexible, as shown in the following
code. The Kp, Ki, and Kd coefficients can be taken from the virtual COM port from
computer, if available. The Kp, Ki, and Kd coefficients are sent as three numbers sepa-
rated by |, as shown in Figure 8.14.

162 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

**
// Example 8.10

#include "mbed.h"
#include "dsp.h"

#if defined(TARGET_K64F)
 AnalogIn pv(A0);
 PwmOut u(D9);
#elif defined(TARGET_LPC1768)
 AnalogIn pv(p19);
 PwmOut u(p21);
#endif
Serial pc(USBTX, USBRX);

arm_pid_instance_f32 pid;
float set_point = 0.8;

int main()
{
 //Set the initial duty cycle to 0%
 u = 0.0;

Figure 8.13  The output of the program using Arduino Serial Plotter, with the variable pv value at the
bottom and the variable u value at the top.

Digital Signal Processing and Control 163

 //Initialize the PID instance structure
 pid.Kp = 1.0;
 pid.Ki = 0.002;
 pid.Kd = 5.0;
 arm_pid_init_f32(&pid, 1);

 while(1) {
 if(pc.readable()) {
 char buff [256]="";
 pc.gets(buff, 256);
 pc.printf("%s\n\r", buff);
 sscanf (buff,"%f|%f|%f",&pid.Kp,&pid.Ki,&pid.Kd);
 arm_pid_init_f32(&pid,1);
 }
 float out = arm_pid_f32(&pid, set_point - pv.read());
 //Range limit the output
 if (out < 0.0)
 out = 0.0;
 else if (out >= 1.0)
 out = 1.0;

 //Set the new output duty cycle
 u = out;
 pc.printf("%0.3f\t%0.3f\n\r",pv.read(), (2+u));
 wait(0.1);
 }
}
**

Further Information about the PID:

https://en.wikipedia.org/wiki/PID_controller
https://os.mbed.com/users/aberk/code/PID/
https://os.mbed.com/questions/1904/mbed‐DSP‐Library‐PID‐Controller/
https://os.mbed.com/teams/FRDM‐K64F‐Code‐Share/code/PID/

https://en.wikipedia.org/wiki/PID_controller
https://os.mbed.com/users/aberk/code/PID/
https://os.mbed.com/questions/1904/mbed-DSP-Library-PID-Controller/
https://os.mbed.com/teams/FRDM-K64F-Code-Share/code/PID/

164 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

8.7  Summary

This chapter illustrates how to use the Arm® Mbed™‐DSP library to perform digital
signal processing, e.g., low‐pass filter, high‐pass filter, band‐pass filter, band‐stop filter
and notch filter. It also illustrates how to use the Arm® Mbed™‐DSP library to perform
FFT (fast Fourier transform) and inverse FFT, as well as how to implement a PID
controller.

Figure 8.14  The output of the program using Arduino Serial Monitor, with the Kp, Ki, and Kd
coefficients (1|0|0) sent from computer to mbed device through virtual COM port (top) and the
corresponding responses of the virtual COM port (bottom).

165

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

9

Never, never, never give up.
‐ Winston Churchill

9.1  Debugging

Debugging is an important process to get rid of the errors in the code. In programming
terms, "bugs" mean errors, and "debugging" means removing errors. The use of the
terms can be dated back to the 1940s, when Admiral Grace Hopper was working on a
Mark II Computer at Harvard University, her associates discovered a moth stuck in a
relay and thereby impeding operation, whereupon she remarked that they were "debug-
ging" the system.

Although the full debugging capabilities, which allows you to set break points, step
into the code etc., are not available for the online compiler, many techniques allow you
to get debugging information about your code.

There are generally two types of errors, compile‐time errors and run‐time errors. The
compile‐time errors are normally due to incorrect syntax and misuse of variables and
functions. They can be relatively easily corrected, as otherwise your code would not be
able to be compiled. Run‐time errors are more difficult to eliminate. However, the Arm®
Mbed™ provides a mechanism called light of death, which will flash LEDs like the siren
lights, when a runtime error is encountered. Following is a typical example that will
result in light of death.

Debugging, Timer, Multithreading, and Real‐Time
Programming

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™166

**
// Example 9.1

#include "mbed.h"
 
PwmOut pout(D3);
int main() {
 while(1) {
 for(float p = 0.0f; p < 1.0f; p += 0.1f) {
 pout = p;
 wait(0.1);
 }
 }
}
**

The Arm® Mbed™ also contains some features for reporting runtime errors, for
example:

‐ printf()—Print a formatted message to the USB serial port (stdout default).
‐ error()—Print a formatted message to the USB serial port, then die with "Siren

Lights."
Following is an example on how to use the above methods to report errors.

**
// Example 9.2

#include "mbed.h"

DigitalIn button(p21);
AnalogIn pot(p20);

int main() {
 while(pot > 0.0) {
 printf("Pot value = %f", pot.read());
 wait(0.1);
 }
 error("Loop unexpectedly terminated");
}
**

Debugging, Timer, Multithreading, and Real‐Time Programming 167

You can also use different LEDs to indicate the flow of your code, as shown in the
following example.

**
// Example 9.3

#include "mbed.h"

AnalogIn ain(A0);
DigitalOut led1(LED1); // use for debug
DigitalOut led2(LED2); // use for debug
DigitalOut led3(LED3); // use for debug

int main() {
 while(1) {
 if (ain > 2.0)) {
 led1 = 1;
 led2 = 0;
 led3 = 0;
 }else if (ain > 1.0)) {
 led1 = 0;
 led2 = 1;
 led3 = 0;
 } else {
 led1 = 0;
 led2 = 0;
 led3 = 1;
 }
 }
}
**

Further Information about Debugging:

https://os.mbed.com/handbook/Debugging

9.2  Timer, Timeout, Ticker, and Time

Timer is very useful for measuring small time changes, as illustrated in the following
example. It first starts the Timer, does some calculations, then stops the Timer and
reads the time elapsed in seconds. Any number of Timer objects can be created and can
be started and stopped independently.

https://os.mbed.com/handbook/Debugging

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™168

**
// Example 9.4

#include "mbed.h"

Timer t;

int main() {
    t.start();
    int x=10,y=20;
    y=x+y;
    t.stop();
    printf("Time = %f seconds\n", t.read());
}
**

Figure 9.1 show the Arduino Serial Monitor output of the program. In this example,
the calculation only takes 3 microseconds.

The Timeout interface is used to set up an interrupt to call a function after a specified
delay. In the following example, a function “fun()” has been assigned to a Timeout event,
which will interrupt the main loop after 2 seconds. A Timeout event will only occur once.

Any number of Timeout objects can be created, allowing multiple outstanding inter-
rupts at the same time.

Figure 9.1  The Arduino Serial Monitor output of Timer example.

Exercise 9.1 

Modify the above program so that it can measure the time for running a “for” loop
10,000 times.

Debugging, Timer, Multithreading, and Real‐Time Programming 169

**
// Example 9.5

#include "mbed.h"

Timeout tout;

void fun() {
 printf("Timeout print......\r\n");
}

int main() {
 tout.attach(&fun, 2.0); //set up Timeout to call fun() after 2 seconds
 while(1) {
 printf("Main loop......\r\n");
 wait(0.2);
 }
}
**

Figure 9.2 show the Arduino Serial Monitor output of the program. As we expected,
Timeout event only happened once, after 2 seconds of program running.

The Ticker interface is used to set up a recurring interrupt to repeatedly call a func-
tion at a specified rate. In the following example, a function “fun()” has been assigned to
a Ticker event, which will interrupt the main loop every 2 seconds. A Ticker event will
occur repeatedly.

Any number of Ticker objects can be created, allowing multiple outstanding inter-
rupts at the same time. The function can be a static function or a member function of a
particular object.

Figure 9.2  The Arduino Serial Monitor output of Timeout example.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™170

**
// Example 9.6
#include "mbed.h"
 
Ticker tk;

void fun() {
 printf("Timeout print......\r\n");
}

int main() {
 tk.attach(&fun, 2.0); //set up Ticker to call fun() every 2 seconds
 while(1) {
 printf("Main loop......\r\n");
 wait(0.2);
 }
}
**

Figure 9.3 show the Arduino Serial Monitor output of the program. In this case,
Ticker event happened every 2 seconds.

The Arm® Mbed™ also has a Time function. Following is a simple program to set and
get date and time:

**
// Example 9.7

#include "mbed.h"

int main() {
 set_time(1256729737); // Set RTC time to Wed, 28 Oct 2009 11:35:37

 while (true) {
 time_t seconds = time(NULL);

    printf("Time as seconds since January 1, 1970 = %d\n", seconds);

 printf("Time as a basic string = %s", ctime(&seconds));

 char buffer[32];
 strftime(buffer, 32, "%I:%M %p\n", localtime(&seconds));
 printf("Time as a custom formatted string = %s", buffer);

 wait(1);
 }
}
**

Debugging, Timer, Multithreading, and Real‐Time Programming 171

Further Information about Time:

https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/Timer/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/Timeout/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/Ticker/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/Time/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/events/
https://docs.mbed.com/docs/mbed‐os‐api‐reference/en/latest/APIs/tasks/wait/

9.3  Network Time Protocol (NTP)

Network Time Protocol (NTP) is a networking protocol for clock synchronization
between computer systems over packet‐switched, variable‐latency data networks.
Following is a simple example to show how to get time information from the Internet
using NTP. It uses the following libraries:

Figure 9.3  The Arduino Serial Monitor output of Ticker example.

https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Timer/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Timeout/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Ticker/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/Time/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/events/
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/wait/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™172

“EthernetInterface” library
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
“mbed‐rtos” library
https://os.mbed.com/users/mbed_official/code/mbed‐rtos/
“NTPClient” library
https://os.mbed.com/users/donatien/code/NTPClient/

**
// Example 9.8
// Modified from
// https://developer.mbed.org/users/donatien/code/NTPClient_HelloWorld/

#include "mbed.h"
#include "EthernetInterface.h"
#include "NTPClient.h"

EthernetInterface eth;
NTPClient ntp;

int main()
{
 eth.init();
 eth.connect();

 if (ntp.setTime("0.pool.ntp.org") == 0)
 {
 time_t ctTime;
 ctTime = time(NULL);
 printf("Time is set to (UTC): %s\r\n", ctime(&ctTime));
 }

 eth.disconnect();

 while(1) { }
}
**

Figure 9.4 show the corresponding output of the program.

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/
https://os.mbed.com/users/donatien/code/NTPClient/
https://developer.mbed.org/users/donatien/code/NTPClient_HelloWorld/

Debugging, Timer, Multithreading, and Real‐Time Programming 173

Further Information about NTP:

https://os.mbed.com/users/donatien/notebook/ntp‐client/
https://os.mbed.com/cookbook/NTP‐Client

9.4  Multithreading and Real‐Time Programming

Multithreading is a powerful feature that comes along with the Arm® Mbed™ OS 5. It
allows you to run the tasks in parallel. For example, you can use one thread for com-
munication, and one thread for control. You will see more multithreading examples in
Chapter 12 with a multithreaded web server, and multi‐thread smart lighting.

Multithreading is provided through Real‐Time Operating System (RTOS), one of the
key features of the new mbed OS 5. This much‐requested feature is now incorporated
in the core of the mbed operating system. RTOS provides native thread support to the
OS and applications, simplifying development and integration of complex and robust
application components like networking stacks. The RTOS requires very limited system
overhead.

To create a multithread program in the Arm® Mbed™ is very simple. Just import the
“mbed‐rtos” library, create a function that describes what you would like to do, and call
that function in a thread. The following program uses main loop to print out a message
and uses a separate thread to call the “fun_1()” function to print out another message.

Figure 9.4  The Arduino Serial Monitor output of the NTP example.

https://os.mbed.com/users/donatien/notebook/ntp-client/
https://os.mbed.com/cookbook/NTP-Client

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™174

**
// Example 9.9

#include "mbed.h"
#include "rtos.h"

void fun_1(void const *args) {
 while (true) {
 printf("Thread 1 \n\r");
 Thread::wait(200);
 }
}

int main() {
 Thread thread(fun_1);

 while (true) {
 printf("Main Loop Thread \n\r");
 Thread::wait(100);
 }
}
**

Figure 9.5 shows the Arduino Serial Monitor output of the example. As you can see,
the main loop thread executed every 100 ms, and the separate thread executed every
200 ms.

Figure 9.5  The Arduino Serial Monitor output of the multithread example.

Debugging, Timer, Multithreading, and Real‐Time Programming 175

Following is an improved version of the above example, in which two functions were
created to print two messages and two threads were created in the “main()” function to
call these two functions.

**
// Example 9.10

#include "mbed.h"
#include "rtos.h"

void fun_1(void const *args) {
 while (true) {
 printf("Thread 1 … … \n\r");
 Thread::wait(200);
 }
}
void fun_2(void const *args) {
 while (true) {
 printf("Thread 2 … … \n\r");
 Thread::wait(500);
 }
}

int main() {
 Thread thread1(fun_1);
 Thread thread2(fun_2);

 while (true) {
 }
}
**

Figure 9.6 shows the Arduino Serial Monitor output of the example. As you can see,
the two separate threads run simultaneously.

Following is another multithreaded example, in which two functions were created to
do some calculations and two threads were created in the “main()” function to call these
two functions. The two functions can both use global variable mode to share informa-
tion between them. As shown in Figure 9.7, function “fun_2()” modified the value of
mode and function “fun_1()” could pick up the corresponding changes.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™176

Figure 9.6  The Arduino Serial Monitor output of the improved multithread example.

**
// Example 9.11

#include "mbed.h"
#include "rtos.h"

int mode =0;

void fun_1(void const *args) {
 while (true) {
 printf("mode: %d\n\r", mode);
 Thread::wait(200);
 }
}
void fun_2(void const *args) {
 while (true) {
 mode++;
 Thread::wait(1000);
 }
}

int main() {
 Thread thread1(fun_1);
 Thread thread2(fun_2);

 while (true) {
 }
}
**

Debugging, Timer, Multithreading, and Real‐Time Programming 177

We can also combine the above multithreaded code with the web server code
(Example 8,8) to create a multithreaded web server.

**
// Example 9.12

#include "mbed.h"
#include "EthernetInterface.h"
#include <stdio.h>
#include <string.h>
#include "rtos.h"

#define PORT 80

EthernetInterface eth;

TCPSocketServer server;
bool serverIsListened = false;

TCPSocketConnection client;
bool clientIsConnected = false;

void web_thread(void const *args)
{

 //set up tcp socket
 if(server.bind(PORT)< 0) {
 serverIsListened = false;

Figure 9.7  The Arduino Serial Monitor output of the above multithread example.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™178

 } else {
 printf("tcp server bind succeeded.\n\r");
 serverIsListened = true;
 }

 server.listen();

 //listening for http GET request
 while (serverIsListened) {
 //blocking mode(never timeout)
 if(server.accept(client)<0) {
 printf("failed to accept connection.\n\r");
 } else {
 printf("connection success!\n\rIP: %s\n\r",client.
get_address());
 clientIsConnected = true;

 while(clientIsConnected) {
 char buffer[1024] = {};
 if(client.receive(buffer, 1023)<1){
 break;
 }
 else{
 printf("Received
Data: %d\n\r\n\r%.*s\n\r",strlen(buffer),strlen(buffer),buffer);
 if(buffer[0] == 'G' && buffer[1] == 'E' &&
buffer[2] == 'T' && buffer[3] == ' ' && buffer[4] == '/') {
 printf("GET request incoming.\n\r");
 //set up http response header & data
 char Body[1024] = {};
 sprintf(Body,"<html></title>
<body>Hello World %d </body></html>\n\r\n\r",strlen(buffer));
 char Header[256] = {};
 sprintf(Header,"HTTP/1.1 200 OK\n\
rContent-Length: %d\n\rContent-Type: text\n\rConnection:
Close\n\r\n\r",strlen(Body));
 client.send(Header,strlen(Header));
 client.send(Body,strlen(Body));
 clientIsConnected = false;
 }

 }
 }
 printf("close connection.\n\rtcp server is listening…\n\r");
 client.close();

 }

Debugging, Timer, Multithreading, and Real‐Time Programming 179

 }
}
int main() {
 EthernetInterface eth;
 eth.init(); //Use DHCP
 eth.connect();
 printf("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

 Thread thread(web_thread);
 while(1){}
}
**

Further Information about Multithreading and Real-Time Programming:

https://os.mbed.com/handbook/RTOS
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/
https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/

9.5  Summary

This chapter introduces how to debug, how to use Timer, Timeout, Ticker, and Time,
as well as how to get time and date information from the Internet using NTP
(Network Time Protocol). It also introduces multithread programming and real-time
programming.

https://os.mbed.com/handbook/RTOS
https://docs.mbed.com/docs/mbed-os-api-reference/en/latest/APIs/tasks/rtos/
https://os.mbed.com/blog/entry/Introducing-mbed-OS-5/

181

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

10

Start by doing what’s necessary; then do what’s possible; and suddenly you are
doing the impossible.

‐ Francis of Assisi

10.1  Import Libraries and Programs

The Arm® Mbed™ developer website (used to be https://developer.mbed.org and now
has changed to https://os.mbed.com) is a wonderful resource for your program. There
are a lot of programs and libraries available. A very good way to learn is to import exist-
ing programs into your online compiler workspace (Figure 10.1). Just click the “Import!”
button from your online compiler. An “Import Wizard” will be displayed. From the
“Programs” tab, search what you are looking for from “mbed.org”, then double‐click the
program (or click the “Import!” button) to import! From the “Bookmarked” tab, you can
also import programs from a website and from the “Upload” tab, you can also import
programs from your local computer!

Similarly, you can also import libraries into your program, as shown in the following
screenshot, Figure 10.2. Just click the “Import!” button from your online compiler, then
from the “Libraries” tab, search what you are looking for from “mbed.org” and then
double‐click the library to import!

10.2  Export Your Program

You can also export your project to an offline third‐party compiler software, also called
toolchains. From your online compiler, in the “Program Workspace,” select the project
you would like to export, right‐click it to display a pop‐up menu, and select “Export
Program…” (Figure 10.3).

A pop‐up “Export program” window will appear (Figure 10.4); just make sure you
select the correct export target and export toolchains (Figure 10.5). There are a number
of popular toolchains supported, such as Keil uVersion4, GCC, IAR Systems, and
Kinetic Design Studio. You can also re‐ import the programs that you exported; just
follow the steps of importing from your local computer, described in section 10.1.

Libraries and Programs

https://developer.mbed.org
https://os.mbed.com

182 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Figure 10.1  Import a program from the online compiler.

Figure 10.2  Import a library from the online compiler.

10.3  Write Your Own Library

A library is a collection of code that is designed to provide certain functions, or to
handle certain hardware components.

Libraries and Programs 183

Figure 10.3  Export a program from the online compiler.

Figure 10.4  Export program pop‐up window.

Libraries are crucial in project development, as libraries allow users to share and
reuse the code, so you don’t need to keep reinventing the wheel. For example, as you see
in Chapter 6, if you want to use the combo accelerometer and magnetometer sensor, or
SD card etc., you just need to import the corresponding libraries that deal with the sen-
sor and SD card; you don’t need to rewrite the code from scratch!

184 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

To create a library, right‐click on your program and select “New Library…” as shown
in Figure 10.6.

Enter library name, in this case, I call it “PXMathLibrary”; it’ll add a folder to your
program (Figure 10.7).

Figure 10.5  Export program toolchains option.

Figure 10.6  Create a new library from mbed.org.

Libraries and Programs 185

Figure 10.7  New library name pop‐up window.

Figure 10.8  Create a new file in the library.

Then add two files into the folder, “PXMathLibrary.h” and “PXMathLibrary.cpp” see
Figure 10.8. Figure 10.9 shows the corresponding contents of the two files. In this library,
it gets two analogue input pins, then uses a function called “mean()” to calculate the aver-
age value of the two analogue pins, and display all the values to the computer serial port.

186 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Finally, you can call you library and use the “mean()” function, as shown in
Figure 10.10. In this example, the two analogue input pins are “A0” and “A1”.

Figure 10.11 shows the “Tera Term” screenshot of the three values send to serial port,
the first two values are the analogue input pins “A0” and “A1”, and the third is their
average value.

Figure 10.9  The new library program header file page (top) and CPP file page (bottom).

Libraries and Programs 187

Figure 10.10  The main.ccp file page.

Figure 10.11  The Tera Term outputs.

188 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

10.4  Publish Your Library

To publish your library, just select your library, then right click to display the pop‐up
menu, and choose “Publish”, see Figure 10.12.

A “Revision Commit” window will appear, and type in the commit message, as shown
in Figure 10.13. After clicking the “OK” button, a “Publish Repository” window will

Figure 10.12  Publish a library from the Online Compiler.

Figure 10.13  The Revision commit pop up window.

Libraries and Programs 189

appear, see Figure 10.14, make sure all the information is correct, and click the “OK”
button. A confirmation window will show the URL that your library is published on, see
Figure 10.15. That is it!

Figure 10.14  The Publish Repository popup window.

Figure 10.15  The Publish Repository confirmation popup window.

190 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

10.5  Publish Your Program

You can also publish your program, in a similar way as you publish your library, see
steps shown in Figure 10.16, Figure 10.17, Figure 10.18 and Figure 10.19.

Figure 10.16  Publish a program from the online compiler.

Figure 10.17  The Revision Commit pop‐up window.

Libraries and Programs 191

Figure 10.18  The Publish Repository pop‐up window.

Figure 10.19  The Publish Repository confirmation window.

192 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

10.6  Version Control

Version control is very important in programming, especially for a large project, where
a lot of Things could go wrong. The Arm® Mbed™ online compiler comes along with a
powerful, built‐in version control. With version control, you can easily view the history
of different versions, compare the differences of different versions of your code, and go
back to the previous version if necessary.

To use version control, from your online compiler, select the program, then click the
“Revision” button. A “Revision History” window will be displayed (Figure 10.20). On the
top of the list is you current working set program.

You continue to work on your program (Figure 10.21); when you are ready to finish
the current version and move on to next version, just click the “Commit” button on the
top. A “Revision Commit” window will pop up. Type in the “Commit message” and click
“OK” button (Figure 10.22). Figure 10.23 shows the finished version of your program.

You can keep working on your program (Figure 10.24). In this case, if(din.is_con-
nected()) is added to your program. When you are ready to make another version, again,
just click the “Commit” button on the top. “Revision Commit” window will pop up, type
in the “Commit message” and click “OK” button (Figure 10.25). Again, Figure 10.26
shows all the versions of your program.

You simply repeat this process throughout your development, and whenever you
would like to view the previous versions, just click the “Revision” button, and all the
revision history are available from the “Revision History” window. Figure 10.27 shows a
further updated program, with else structure added. Figures 10.28 and 10.29 show all
the versions of your program before and after the else structure is added.

You can then compare versions, merge versions, and even switch back to the previ-
ous version. Figure 10.30 shows how to select the previous version, and Figure 10.31
shows the previous version program code, which is exactly the same as shown in
Figure 10.21.

Figure 10.20  Revision History in your program page.

Libraries and Programs 193

Figure 10.21  Your current program page.

Figure 10.22  Revision Commit pop‐up window.

Figure 10.23  The finished version of your program shown in Revision History.

194 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Figure 10.24  Your updated program with if (din.is_connected()) added.

Figure 10.25  The Revision Commit pop‐up window.

Figure 10.26  The updated versions of your program shown in Revision History.

Libraries and Programs 195

Figure 10.27  Your further updated program with else structure added.

Figure 10.28  The versions of your program before else structure is added.

Figure 10.29  The versions of your program after else structure is added.

196 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Further Information about Version Control:

https://docs.mbed.com/docs/mbed‐os‐handbook/en/latest/collab/versions/
https://os.mbed.com/docs/v5.6/tools/collab‐online‐comp.html
https://os.mbed.com/docs/v5.6/tools/version‐control.html

10.7  Collaborations

The Arm® Mbed™ online compiler also allows multiple users to work on the same pro-
gram, i.e., collaborations. To add users to your program, first you need to publish your
program, then from the “Program Details” panel on the right hand side, click “Homepage”

Figure 10.30  Select the previous version.

Figure 10.31  The program code of previous version.

https://docs.mbed.com/docs/mbed-os-handbook/en/latest/collab/versions/
https://os.mbed.com/docs/v5.6/tools/collab-online-comp.html
https://os.mbed.com/docs/v5.6/tools/version-control.html

Libraries and Programs 197

button, to go to your program homepage, also called your repository homepage
(Figure 10.32).

Select the “Admin settings” tab (Figure 10.33), and somewhere in the middle of the
page, there is “Privacy Settings.”

In the “Privacy Settings” (Figure 10.34), you can add one or more developers to your
program. In this case, two developers are added, “Perry Xiao” is the original developer,
and “Johnny English” is the additional developer. Remember to click the “Save changes”
button to save the changes!

Figure 10.32  The Homepage button on the right‐hand side of your program page.

Figure 10.33  The “Admin settings” tab on your program repository page.

198 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

The additional developer will then be able to import the program (Figure 10.35) into
his own program workspace, modify it, save it, commit to a version (Figure 10.36), etc.
You will then be able to see the additional developer’s version in your own Revision
History page (Figure 10.37).

When ready, the additional user can publish the program back to the original reposi-
tory homepage (Figure 10.38). Figure 10.39 shows the publication confirmation pop‐up
window.

Figure 10.34  The “Privacy Settings” on your Program Repository page.

Figure 10.35  The additional developer can import your program into his workspace.

Libraries and Programs 199

Figure 10.36  The additional developer can also commit to a revision of the program.

Figure 10.37  The revision history in your program shows additional developer’s revision.

Figure 10.38  The additional developer can also publish the program.

200 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

After that, when the original developer (you) log in, you will see an “Update” sign
appear on the corresponding program. After you click the “Update” button in the
“Program Details” tab, the program will be updated to the latest version (Figure 10.40).
By clicking “Revision” button, you will also be able to see the revision history
(Figure 10.41).

Figure 10.39  The additional developer publication confirmation pop‐up window.

Figure 10.40  The “Update” button in the “Program Details” tab.

Libraries and Programs 201

Further Information about Collaborations:
https://os.mbed.com/docs/v5.6/tools/collaborate.html

10.8  Update Your Library and Program

Whenever your library or your program has a newer version available, a green cycle
arrow will appear on your library or program icon (Figure 10.42). To update, just select
your library or program and click the “Update” button on the right‐hand “Program
Details” panel.

Figure 10.41  The updated Revision History.

Figure 10.42  The “Update” button and green arrows on the right‐hand “Program Details” panel.

https://os.mbed.com/docs/v5.6/tools/collaborate.html

202 Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™

Further Information about Arm® Mbed™ Libraries and Projects:

https://docs.mbed.com/docs/mbed‐os‐handbook/en/5.1/dev_tools/online_comp/
https://docs.mbed.com/docs/mbed‐os‐handbook/en/5.1/getting_started/blinky_

compiler/

10.9  Summary

This chapter introduces how to import libraries and programs, how to export programs,
how to write your own libraries, how to publish libraries and programs, how to perform
version control, how to develop programs through collaborations, and how to update
your libraries and programs in the Arm® Mbed™ online development environment.

https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/dev_tools/online_comp/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/getting_started/blinky_compiler/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.1/getting_started/blinky_compiler/

Part III

The IoT Starter Kit and IoT Projects

In This Part
Chapter 11: Arm® Mbed™ Ethernet IoT Starter Kit
Chapter 12: IoT Projects with Arm® Mbed™

203

205

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

11

It is never too late to be what you might have been.
‐ George Eliot

The Arm® Mbed™ Ethernet IoT Starter Kit comes with two components, FRDM‐K64F
development board and mbed application shield. As introduced in Chapter 1,
section 1.4.4, the mbed application shield has many useful features, such as 128×32
LCD, joystick, RGB LED, two potentiometers, a speaker, three‐axis accelerometer, and
LM75B temperature sensor. These features are great for developing IoT applications. To
use the kit, you will need to mount the mbed application shield on the top of the FRDM‐
K64F development board, and make sure all pins are fully pushed in (Figure 11.1). The
NXP LPC1768 and its mbed application board, as described in Chapter 1, section 1.4.1,
provide many similar features to the IoT Starter Kit, so for the purpose of backward
compatibility, most of the examples here are made to also work on the NXP LPC1768
and its mbed application board.

11.1  128×32 LCD

The mbed application shield’s onboard 128×32 LCD (liquid crystal display) is con-
nected by pins D11, D13, D12, D7, and D10 to the FRDM‐K64F board. Following is an
example LCD program, which prints text “Hello World” at (0,3) position on the LCD
and prints a counting variable at (0,15) position on the LCD. In this program, you will
need to import the “C12832” LCD library (https://developer.mbed.org/users/chris/
code/C12832/).

Arm® Mbed™ Ethernet IoT Starter Kit

https://developer.mbed.org/users/chris/code/C12832/
https://developer.mbed.org/users/chris/code/C12832/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™206

**
// Example 11.1
#include "mbed.h"
#include "C12832.h"
 
#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 C12832 lcd(D11, D13, D12, D7, D10);
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 C12832 lcd(p5, p7, p6, p8, p11);
#endif
 
int main()
{
 int j=0;
 lcd.cls();
 lcd.locate(0,3);
 lcd.printf("Hello World");
 
 while(true) {
 lcd.locate(0,15);
 lcd.printf("Counting : %d",j);
 j++;
 wait(1.0);
 }
}
**

Figure 11.1  The Arm® Mbed™ Ethernet IoT Starter Kit.

Arm® Mbed™ Ethernet IoT Starter Kit 207

11.2  Joystick

The mbed application shield’s onboard joystick is connected by pins A2, A3, A4, A5,
and D4 to the FRDM‐K64F board.

Following is an example program for the Arm® Mbed™ application board that uses
the joystick button. It reads the joystick inputs and print correspondingly to a computer
through a serial port.

**
// Example 11.2
#include "mbed.h"
 
#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 DigitalIn up(A2);
 DigitalIn down(A3);
 DigitalIn left(A4);
 DigitalIn right(A5);
 DigitalIn centre (D4);

#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 DigitalIn up(p15);
 DigitalIn down(p12);
 DigitalIn left(p13);
 DigitalIn right(p16);
 DigitalIn center(p14);

#endif
 
 int main()
{
 
 while (1) {
 while (1) {
 if(up){
 printf("up\n\r");
 }
 if(down){
 printf("down\n\r");
 }

Exercise 11.1 

Modify the above program so that it displays your name and your telephone number on
the LCD.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™208

 if(left){
 printf("left\n\r");
 }
 if(right){
 printf("right\n\r");
 }
 if(centre){
 printf("center\n\r");
 }
 wait(0.2);
 } }
}

**

Exercise 11.2 

Modify the above program so that it displays up, down, left, right, and press down on
LCD when the joystick button is pressed.

11.3  Two Potentiometers

The mbed application shield’s two onboard potentiometers (pot 1 and pot 2) are con-
nected at pin A0 and A1 of the FRDM‐K64F board. Following is a sample code to dis-
play the two potentiometers values on LCD.

**
// Example 11.3
#include "mbed.h"
#include "C12832.h"
 
#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 C12832 lcd(D11, D13, D12, D7, D10);
 AnalogIn pot1 (A0);
 AnalogIn pot2 (A1);
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 C12832 lcd(p5, p7, p6, p8, p11);
 AnalogIn pot1 (p19);
 AnalogIn pot2 (p20);
#endif
 
int main()
{

Arm® Mbed™ Ethernet IoT Starter Kit 209

 while(1) {
 lcd.cls();
 lcd.locate(0,3);
 lcd.printf("P1 : %10.2f", (float)pot1);
 lcd.locate(0,15);
 lcd.printf("P2 : %10.2f", (float)pot2);
 wait(0.01);
 }
}
**

11.4  Speaker

The mbed application shield’s onboard speaker is connected at pin D6 of the FRDM‐
K64F board. Following is an example code to play the sounds on speaker, ranging from
2000 Hz to 12,000 Hz, with 100 Hz interval.

**
// Example 11.4

#include "mbed.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 PwmOut speaker(D6);
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 PwmOut speaker(p26);
#endif

int main()
{
 for (int i=0; i<100; i++) {
 float f=i*100+2000; //frequency 2000 Hz to 12000 Hz
 float T=1.0/f; //Period
 speaker.period(T);
 speaker =0.5;
 wait(0.02);
 }
}
**

Exercise 11.3 

Modify the above program so that it displays the sum and differences of two potentiom-
eters on LCD screen.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™210

In music, the frequency of notes can be calculated by the following formula:

	
f n

n

() = ×
−

2 440
49

12 Hz
	

Where n is the nth key in piano. The note middle C is the 40th key in a standard piano,
and has a frequency of 261.63 Hz. Table 11.1 shows the frequencies of seven basic notes.

Following is an example code to play middle C note (261.63 Hz) on a speaker.

**
// Example 11.5

#include "mbed.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 PwmOut speaker(D6);
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 PwmOut speaker(p26);
#endif

int main()
{
 float f=261.63; //frequency of middle C
 float T=1.0/f; //Period
 speaker.period(T);
 speaker =0.5;
 wait(0.02);
}
**

Table 11.1  The Frequency of Music Notes.

C D E F G A B

261.63 Hz 293.66 Hz 329.63 Hz 349.23 Hz 392.00 Hz 440.00 Hz 493.88 Hz

Exercise 11.4 

Use the information in Table 11.1 to modify the above program so that it plays other
music notes.

Exercise 11.5 

Write a program that plays the song “Twinkle Twinkle, Little Star.”

Arm® Mbed™ Ethernet IoT Starter Kit 211

11.5  Three‐Axis Accelerometer

An accelerometer is an electromechanical device that will measure acceleration forces.
The mbed application shield’s onboard three‐axis accelerometer, which uses I2C for
communications, is connected by pins D14 and D15 (SDA, SCL) to the FRDM‐K64F
board. Following is an example to get the acceleration information from the X, Y, and Z
axes. In this program, you will need to import the MMA7660 accelerometer library
(https://developer.mbed.org/users/Sissors/code/MMA7660/).

**
// Example 11.6

#include "mbed.h"
#include "C12832.h"
#include "MMA7660.h"
 
#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 C12832 lcd(D11, D13, D12, D7, D10);
 MMA7660 MMA(D14,D15); // I2C (SDA,SCL)
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 C12832 lcd(p5, p7, p6, p8, p11);
 MMA7660 MMA(p28,p27); // I2C (SDA,SCL)
#endif
 
 int main()
{
 lcd.cls();
 while(1) {
 lcd.locate(0,3);
 lcd.printf("x=%.2f y=%.2f z=%.2f",MMA.x(), MMA.y(), MMA.z());
 wait(0.1);
 }
}
**

Exercise 11.6 

Modify the above program so that if X‐axis values are larger than a certain value, it
switches on red RGB LED; if Y‐axis values are larger than a certain value, it switches on
green RGB LED; and if Z‐axis values are larger than a certain value, it switches on blue
RGB LED.

11.6  LM75B Temperature Sensor

The mbed application shield’s onboard LM75B temperature sensor, which also uses I2C
for communications, is connected by pins D14 and D15 (SDA, SCL) to the FRDM‐K64F

https://developer.mbed.org/users/Sissors/code/MMA7660/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™212

board. Following is an example for the onboard LM75B temperature sensor. In this
program, you will need to import the LM75B library (https://developer.mbed.org/
users/chris/code/LM75B/).

**
// Example 11.7

#include "mbed.h"
#include "LM75B.h"
#include "C12832.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 C12832 lcd(D11, D13, D12, D7, D10);
 LM75B sensor(D14,D15); // I2C (SDA,SCL)
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 C12832 lcd(p5, p7, p6, p8, p11);
 LM75B sensor(p28,p27); // I2C (SDA,SCL)
#endif

int main ()
{

 while (1) {
 lcd.cls();
 lcd.locate(0,3);
 lcd.printf("Temp = %.1f\n", sensor.read());
 wait(1.0);
 }
}
**

Exercise 11.7 

Modify the above program so that you can change the temperature display either in
Celsius or Fahrenheit by pressing the joystick.

11.7  RGB LED

The mbed application shield’s RGB LED is connected by pins D5, D8, and D9 to the
FRDM‐K64F board.

Following is an example program for the onboard RGB LED. It uses PWM to gradu-
ally light up RGB LED one by one. For RGB LED, value 1 means off, and 0 means fully on.

https://developer.mbed.org/users/chris/code/LM75B/
https://developer.mbed.org/users/chris/code/LM75B/

Arm® Mbed™ Ethernet IoT Starter Kit 213

**
// Example 11.8
#include "mbed.h"

#if defined(TARGET_K64F) //FRDM-K64F IoT Starter Kit
 PwmOut r (D5);
 PwmOut g (D8);
 PwmOut b (D9);
#elif defined(TARGET_LPC1768) //LPC1768 + Application board
 PwmOut r (p23);
 PwmOut g (p24);
 PwmOut b (p25);
#endif

int main()
{
 r.period(0.001);
 while(1) {
 for(float i = 0.0; i < 1.0 ; i += 0.01) {
 r = 1.0 - i;
 g=1;
 b=1;
 wait (0.01);
 }
 for(float i = 0.0; i < 1.0 ; i += 0.01) {
 r=1;
 g = 1.0 - i;
 b=1;
 wait (0.01);
 }
 for(float i = 0.0; i < 1.0 ; i += 0.01) {
 r=1;
 g=1;
 b = 1.0 - i;
 wait (0.01);
 }
 }
}
**

Exercise 11.8 

Modify the above program so that it displays red and blue colors at different intensities,
depending on the inputs of two potentiometers.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™214

Further Information about Ethernet IoT Starter Kit:

https://os.mbed.com/platforms/IBMethernetKit/
https://os.mbed.com/components/mbed‐Application‐Shield/

11.8  Summary

This chapter provides example codes for the Arm® Mbed™ Ethernet IoT Starter Kit,
illustrating the usages of 128×32 LCD, joystick, RGB LED, two potentiometers, speaker,
three‐axis accelerometer, and LM75 temperature sensor.

https://os.mbed.com/platforms/IBMethernetKit/
https://os.mbed.com/components/mbed-Application-Shield/

215

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

12

Reach for the stars.
 ‐ Christa McAuliffe

12.1  Temperature Monitoring over the Internet

Temperature measurement is one of the most fundamental, most commonly performed
measurements. It can be temperature of a room, temperature of a person, or tempera-
ture of a device. Being able to monitor the temperature remotely, over the Internet, has
many potential important applications. For example, many old people live alone. If they
fall ill, it might be some time before it is discovered that they are in crisis. If we can
remotely monitor their body temperature, then when they are sick, especially with a
life‐threatening illness, we can alert the doctors, healthcare providers, and relatives
instantaneously. In this project, you will use the LM75B temperature sensor on the
application shield as the temperature sensor, and Ethernet as the means to connect to
the Internet. Figure 12.1 shows the schematic diagram of the project.

Hardware Required
●● Arm® Mbed™ Ethernet IoT Starter Kit (FRDM‐K64F + mbed application shield)
●● Mini USB cable and Ethernet cable

Software Required
●● An Internet browser

Procedure
Connect the Arm® Mbed™ Ethernet IoT Starter Kit to a computer using a mini USB
cable, and connect it to the Internet using an Ethernet cable. There are many ways to
monitor temperature over the Internet. The simplest way is to turn FRDM‐K64F into a
web server. The following example illustrates how to set up a web server, read the tem-
perature sensor data, and print it on the LCD as well as on the web page. You need to
import four libraries to run this code:

●● “LM75B” library—for temperature sensor
https://developer.mbed.org/users/chris/code/LM75B/

IoT Projects with Arm® Mbed™

https://developer.mbed.org/users/chris/code/LM75B/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™216

●● “C12832” library—for LCD
https://developer.mbed.org/users/chris/code/C12832/

●● “EthernetInterface” library—for Ethernet connection
https://os.mbed.com/users/mbed_official/code/EthernetInterface/

●● “mbed‐rtos” library—for EthernetInterface and multithreading
https://os.mbed.com/users/mbed_official/code/mbed‐rtos/

**
// Example 12.1

#include "mbed.h"
#include "EthernetInterface.h"
#include "rtos.h"
#include <stdio.h>
#include <string.h>
#include "LM75B.h"
#include "C12832.h"

#define PORT 80

bool serverIsListened = false;

TCPSocketConnection client;
bool clientIsConnected = false;
int mode=0;

C12832 lcd(D11, D13, D12, D7, D10);
LM75B sensor(D14,D15);

Figure 12.1  The schematic diagram of the temperature monitoring project over the Internet.

https://developer.mbed.org/users/chris/code/C12832/
https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

IoT Projects with Arm® Mbed™ 217

EthernetInterface eth;
TCPSocketServer server;
float temp=0;

void web_thread(void const *args){
 if(server.bind(PORT)< 0) {
 serverIsListened = false;
 } else {
 serverIsListened = true;
 }

 server.listen();

 //listening for http GET request
 while (serverIsListened) {
 if(server.accept(client)<0) {
 printf("failed to accept connection.\n\r");
 } else {
 printf("connection success!\n\rIP: %s\n\r",client.get_address());
 clientIsConnected = true;

 while(clientIsConnected) {
 char buffer[1024] = {};
 if(client.receive(buffer, 1023)<1){
 break;
 }
 else{
 printf("Received
Data: %d\n\r\n\r%.*s\n\r",strlen(buffer),strlen(buffer),buffer);
 if(buffer[0] == 'G' && buffer[1] == 'E' && buffer[2]
== 'T' && buffer[3] == ' ' && buffer[4] == '/') {
 printf("GET request incoming.\n\r");
 //set up http response header & data
 char Body[1024] = {};
 sprintf(Body,"Temp = %f \n\r\n\r",temp);
 char Header[256] = {};
 sprintf(Header,"HTTP/1.1 200 OK\n\rContent-Length:
%d\n\rContent-Type: text\n\rConnection: Close\n\r\n\r",strlen(Body));
 client.send(Header,strlen(Header));
 client.send(Body,strlen(Body));
 clientIsConnected = false;
 }
 }
   }
 printf("close connection.\n\r tcp server is listening...\n\r");
 client.close();
 }

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™218

 }
}

int main (void)
{
 eth.init(); //Use DHCP
 eth.connect();
 printf("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

 Thread thread(web_thread);
 while (1) {
 lcd.cls();
 lcd.locate(0,3);
 temp=sensor.read();
 lcd.printf("Temp = %.1f\n", temp);

 printf("Temp = %.1f\n\r", temp);
 wait(1.0);
 }
}
**

In this case, you can write a simple Java TCP client to send commands to the starter
kit; see the following example code and make sure you use the correct server IP address
“x.x.x.x”. Change the mode value to 0, 1, and 2, to switch the light off, on, and to auto-
matic mode. You can compile and execute the code using an online Java compiler, such
as this one (Figure 12.2):

http://www.tutorialspoint.com/compile_java_online.php

Figure 12.2  Online Java compiler.

http://www.tutorialspoint.com/compile_java_online.php

IoT Projects with Arm® Mbed™ 219

**
// Example 12.2

import java.io.*;
import java.net.*;

public class TCPClient
{
 public static void main(String[] args)
 {
 Socket echoSocket; //Declares a Socket
 PrintWriter out; //Declares a PrintWriter object.
 BufferedReader in;
 try
 {
 echoSocket = new Socket("x.x.x.x", 9999);
 out = new PrintWriter(echoSocket.getOutputStream(),true);
 in = new BufferedReader(new
InputStreamReader(echoSocket.getInputStream()));

 String mode = "0"; //0: off 1: on 2: auto
 out.println(mode);

 out.close();
 in.close();
 echoSocket.close();
 }
 catch(Exception e)
 {
 System.out.println("Error: "+e.toString());
 System.exit(-1);
 }
 }//end main
}
**

Alternatively, you can also set up your Arm® Mbed™ Ethernet IoT Starter Kit as a
HTTP client, and use the POST method to update the temperature values to a remote
web server. Following is a simple example to post some data to a web server (http://
httpbin.org/post). In this code, you will need to import “HTTPClient” library:

https://os.mbed.com/users/donatien/code/HTTPClient/

http://httpbin.org/post
http://httpbin.org/post
https://os.mbed.com/users/donatien/code/HTTPClient/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™220

**
// Example 12.3

#include "mbed.h"
#include "EthernetInterface.h"
#include "HTTPClient.h"

EthernetInterface eth;
HTTPClient http;
char str[512];

int main()
{
  eth.init();
  eth.connect();
 
  HTTPMap map;
  HTTPText inText(str, 512);
  map.put("Hello", "World");
  map.put("test", "1234");
  printf("\nTrying to post data...\n\r");
  ret = http.post("http://httpbin.org/post", map, &inText);
  if (!ret)
  {
  printf("Executed POST successfully ‐ read %d characters\n",
strlen(str));
  printf("Result: %s\n\r", str);
  }
  else
  {
  printf("Error ‐ ret = %d ‐
HTTP return code = %d\n\r", ret, http.getHTTPResponseCode());
  }
 
  eth.disconnect();

  while(1) { }
}
**

You can also send the temperature values to an email address. Following is a simple
email example. Make sure you use the correct server, port, username, password, sender

Exercise 12.1 

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading to a web server using the POST method.

http://httpbin.org/post

IoT Projects with Arm® Mbed™ 221

address, and receiver address when you are running it. In this example, you will need to
import the “SimpleSMTPClient” library.

https://os.mbed.com/users/sunifu/code/SimpleSMTPClient/

**
// Example 12.4

#include "mbed.h"
#include "EthernetInterface.h"
#include "SimpleSMTPClient.h"

#define DOMAIN "gmail.com"
#define SERVER "smtp.gmail.com"
#define PORT "587" //25 or 587,465(OutBound Port25 Blocking)
#define USER "xxxx"
#define PWD "xxxx"
#define FROM_ADDRESS "xxxx@xxxx"
#define TO_ADDRESS "xxx@xxx"

#define SUBJECT "Test Mail"

int main()
{
 EthernetInterface eth;
 eth.init();
 eth.connect();

 SimpleSMTPClient smtp;
 int ret;
 char msg[]="Hello World";

 smtp.setFromAddress(FROM_ADDRESS);
 smtp.setToAddress(TO_ADDRESS);
 smtp.setMessage(SUBJECT,msg);

 ret = smtp.sendmail(SERVER, USER, PWD, DOMAIN,PORT,SMTP_AUTH_NONE);

 if (ret) {
 printf("Email Sending Error\r\n");
 } else {
 printf("Email Sending OK\r\n");
 }

 return 0;
}
**

https://os.mbed.com/users/sunifu/code/SimpleSMTPClient/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™222

A much more elegant way is to use MQTT (Message Queuing Telemetry Transport)
protocol. Following is an example program that connects to a MQTT broker (iot.eclipse.
org) at port 1883, creates a topic called “PX‐Sensor,” and publishes the data (Hello
World) four times.

**
// Example 12.5

#define MQTTCLIENT_QOS2 1
#include "MQTTEthernet.h"
#include "MQTTClient.h"

int arrivedcount = 0;

void messageArrived(MQTT::MessageData& md)
{
 MQTT::Message &message = md.message;
 ++arrivedcount;
}

int main(int argc, char* argv[])
{
 MQTTEthernet ipstack = MQTTEthernet();
 char* topic = "PX-Sensor";

 MQTT::Client<MQTTEthernet, Countdown> client =
MQTT::Client<MQTTEthernet, Countdown>(ipstack);

 char* hostname = "iot.eclipse.org";
 int port = 1883;

 int rc = ipstack.connect(hostname, port);

 MQTTPacket_connectData data = MQTTPacket_connectData_initializer;
 data.MQTTVersion = 3;
 data.clientID.cstring = "PX-Sensor";
 data.username.cstring = "testuser";
 data.password.cstring = "testpassword";
 if ((rc = client.connect(data)) != 0)
 printf("From MQTT connect: %d\n\r", rc);

Exercise 12.2 

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading out by email.

IoT Projects with Arm® Mbed™ 223

 if ((rc = client.subscribe(topic, MQTT::QOS2, messageArrived)) != 0)
 printf("From MQTT subscribe: %d\n\r", rc);

 MQTT::Message message;

 for (int i=0;i<5;i++){
 // QoS 0
 char buf[100];
 sprintf(buf, "%d! QoS 0 message \n", i);
 message.qos = MQTT::QOS0;
 message.retained = false;
 message.dup = false;
 message.payload = (void*)buf;
 message.payloadlen = strlen(buf)+1;
 rc = client.publish(topic, message);
 while (arrivedcount < 1)
 client.yield(100);
 wait(2);
 }

 client.unsubscribe(topic);
 client.disconnect();
 ipstack.disconnect();

 return 0;
}
**

You can view the standard MQTT clients, such as IBM’s WMQTT IA92 Java utility:

https://github.com/mqtt/mqtt.github.io/wiki/ia92

Just download the software and follow the instructions to install and run it. If you
have not installed Java before, you do need to install Java first before you can run the
program. Figure 12.3 shows the screenshot of the program and the messages it receives.

Further Information about Java:

https://www.java.com/en/
https://www.java.com/en/download/help/index_installing.xml
http://www.oracle.com/technetwork/topics/newtojava/learn‐141096.html

Exercise 12.3 

Using the above program as an example, modify the example code 12.1 so that it sends
the temperature reading out at MQTT messages.

https://github.com/mqtt/mqtt.github.io/wiki/ia92
https://www.java.com/en/
https://www.java.com/en/download/help/index_installing.xml
http://www.oracle.com/technetwork/topics/newtojava/learn-141096.html

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™224

12.2  Smart Lighting

Lighting and heating are the two most significant parts of utility bill. Smart lighting can
help to reduce costs. In this project, we use a LED to represent the light of a room, a PIR
(passive infrared) sensor to detect if a person is present in the room, a LDR (light‐
dependent resister) to detect the ambient light, i.e., whether it is daylight, or night.
Figure 12.4 shows the schematic circuit diagram of the project.

Hardware Required
●● Arm® Mbed™ FRDM‐K64F development board
●● LED
●● LDR + 10kΩ resister
●● PIR sensor (HiLetgo HC‐SR501)
●● Mini USB cable and Ethernet cable

Software Required
●● An Internet browser
●● Java compiler

Figure 12.3  The WMQTT IA92 Java utility.

IoT Projects with Arm® Mbed™ 225

Procedure
Following are the schematic diagram of the circuit and corresponding software code.
You will need to import the following libraries.

●● “EthernetInterface” library—for Ethernet connection
https://os.mbed.com/users/mbed_official/code/EthernetInterface/

●● “mbed‐rtos” library—for EthernetInterface and multithreading
https://os.mbed.com/users/mbed_official/code/mbed‐rtos/

The program runs in two separate threads, one for receiving commands from the
Internet using TCP Socket and one for controlling the light. There are three modes:

●● Mode 0: default off mode. In this mode, the light is always off.
●● Mode 1: on mode. In this mode, the light is always on.
●● Mode 2: automatic mode. In this mode, if there is someone present in the room and

ambient light is dark, switch the light on; otherwise, keep the light off.

Figure 12.4  The schematic circuit diagram of the smart lighting project.

https://os.mbed.com/users/mbed_official/code/EthernetInterface/
https://os.mbed.com/users/mbed_official/code/mbed-rtos/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™226

**
// Example 12.6

#include "mbed.h"
#include "EthernetInterface.h"
#include "rtos.h"
#define SERVER_PORT 9999

EthernetInterface eth;
DigitalOut light(D3); //LED output
DigitalIn pir(D2); // PIR senor input
AnalogIn ldr(A0); //LDR sensor input

int val=0;
int mode = 0; //0: off; 1: on; 2: auto

void socket_thread(void const *args) {

 TCPSocketServer server;
 server.bind(SERVER_PORT);
 server.listen();

 while (true) {
 TCPSocketConnection client;
 server.accept(client);
 client.set_blocking(false, 1500); // Timeout after (1.5)s
 printf("Connection from: %s\n", client.get_address());
 char buffer[256];
 while (true) {
 int n = client.receive(buffer, sizeof(buffer));
 if (n <= 0) break;

 // print received message to terminal
 buffer[n] = '\0';
 printf("Received message from Client :'%s'\n",buffer);

 if(strcmp(buffer,"off")==0)
 {
 mode=0;
 }
 else if(strcmp(buffer,"on")==0)
 {
 mode=1;
 }
 else if(strcmp(buffer,"auto")==0)
 {
 mode=2;
 } //0: auto; 1: on; 3: off

IoT Projects with Arm® Mbed™ 227

 }
 client.close();
 }
}

void light_thread(void const *args) {
 while (true) {
 if (mode ==0) //default off mode
 {
 light=0;
 }
 else if (mode ==1) // on mode
 {
 light=1;
 }
 else // automatic mode
 {
 val = pir.read();
 if (val==0) {
 if (ldr.read()>0.7) //LDR 1k ohm: full light
 { // 40k omh: dark
 light=1;
 }
 }
 else{
 light=0;
 }
 }
 Thread::wait(500);
 }
}
int main()
{
 eth.init();
 eth.connect();
 printf(" IP address: %s \r\n",eth.getIPAddress());

 Thread thread(socket_thread, NULL, osPriorityNormal,
DEFAULT_STACK_SIZE);
 Thread thread_2(light_thread, NULL, osPriorityNormal,
DEFAULT_STACK_SIZE);
 while(1){}
}
**

Exercise 12.4 

Modify the above example so that it uses UDP server to receive the messages.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™228

Following is a Java Socket client example that can send “on,” “off,” and “auto” com-
mand to the Arm® Mbed™ development board. Figure 12.5 shows its graphical user
interface.

**
// Example 12.7

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*; //Imports java input-output libraries (for
StreamReaders)
import java.net.*; //Imports java network libraries (for sockets)

public class SmartLight {

 static String SERVER="192.168.137.1";
	 static int PORT = 9999;
 /**
 * Create the GUI and show it.
 */
 private static void createAndShowGUI() {
 //Create and set up the window.
 JFrame frame = new JFrame("SmartLight");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton openButton = new JButton("On");
 JButton closeButton = new JButton("Off");
 JButton autoButton = new JButton("Auto");
		 frame.getContentPane().setLayout(new FlowLayout ());
 frame.getContentPane().add(openButton);
 frame.getContentPane().add(closeButton);
 frame.getContentPane().add(autoButton);

		 openButton.addActionListener(new ActionListener() {
		 public void actionPerformed(ActionEvent e) {
 sendcmd(SERVER, PORT,"on");
 }

Figure 12.5  The Java Socket client program

IoT Projects with Arm® Mbed™ 229

		 });
		 closeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 sendcmd(SERVER, PORT,"off");
 }
		 });
		 autoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 sendcmd(SERVER, PORT,"auto");
 }
		 });	
 //Display the window.
 frame.pack();
 frame.setVisible(true);
 }
 	 private static void sendcmd(String server, int port,String cmd)
	 {

	 Socket echoSocket;	 //Declares a socket
 PrintWriter out;	 //Declares a PrintWriter object to write
to the socket
 BufferedReader in;	//Declares a Buffered reader to read
from the socket
	 try
		 {

 //Instantiates a new socket with the server IP address
and port number
 echoSocket = new Socket(server, port);

 //Creates a new output stream in order to write to the socket
 out = new PrintWriter(echoSocket.getOutputStream(),true);

 //Input from the socket with a bufferedreader
 in = new BufferedReader(new InputStreamReader(
 	 echoSocket.getInputStream()));

 //Writes the user input into the socket for transmission
 out.println(cmd);

 //Writes the received "echo" line to the screen
 JOptionPane.showMessageDialog(null, in.readLine(), "",
JOptionPane.INFORMATION_MESSAGE);		

 //Close all the input and output streams
 out.close();
 in.close();

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™230

 echoSocket.close();
 }
 catch(Exception e)
 {
 System.out.println("Error: "+e.toString());
 System.exit(-1);
 }
 }//end sendcmd
 public static void main(String[] args) {
 //creating and showing this application's GUI.
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 });
 }
}
**

Further Information about Java Sockets:

http://docs.oracle.com/javase/tutorial/networking/sockets/
https://www.tutorialspoint.com/java/java_networking.htm

12.3  Voice‐Controlled Door Access

Modern mobile phones come with many useful features and functions that can enrich
your IoT projects. In this project, we will use the speech recognition feature of Android
phones, to make a voice controller door access. We will develop the phone app using
MIT App Inventor 2 (AI2), which is an excellent web‐based, graphical programming
tool, developed by the Massachusetts Institute of Technology in the United States. The
phone app will use speech recognition to take commands. In this case, when the phrase
“open sesame” is detected, it will send a command to FRDM‐K64F development board
to open the door through a servo motor. Figure 12.6 shows a schematic circuit diagram
of the project.

Hardware Required
●● Arm® Mbed™ Ethernet IoT Starter Kit (FRDM‐K64F + mbed application shield)
●● A servo motor
●● An Android phone
●● Mini USB cable and Ethernet cable

Software Required
●● An Internet browser
●● MIT AI2 online compiler

http://docs.oracle.com/javase/tutorial/networking/sockets/
https://www.tutorialspoint.com/java/java_networking.htm

IoT Projects with Arm® Mbed™ 231

Servo motors (or servos, RC servos etc.) are small, cheap, mass‐produced motors
typically having a drive wheel that is controlled by a PWM coded signal. A typical radio
control (RC) servo is shown in Figure 12.6. The wheel moves around 0 to 180 degrees.
Servo motors are ideal for hobbyist and student robotics applications. You can easily get
servo motors from Amazon, Sparkfun, eBay, Cool Components, etc. Hitec and Futaba
are the leading servo manufacturers.

Procedure
To use MIT AI2, just log in to the MIT AI2 website:

http://ai2.appinventor.mit.edu

Then follow the instructions to register and log in. You can also use your Google
account to log in. After logging in, you can create a new project by clicking “Projects ‐>
Start new project”. You need to give a name to your project—in this example, we called
it “IoTProject” (Figure 12.7). The “Viewer” window in the middle shows the front end of
your phone app, i.e., how it looks when running.

From the left side “Pallette,” under the section of “User Interface,” drag a “Button,” a
“Textbox,” a “Label” into the screen. This will be the graphic interface of your phone
app. Then, from the section of “Media,” drag a “SpeechRecognizer” component into the
screen. Please note, this is an invisible component of your phone app. From the section
of “Connectivity,” drag a “Web” component into the screen. This is also an invisible
component.

Next click the “Blocks” button on the top right corner, this will bring the backend of
your phone app (Figure 12.8). You can switch between the frontend view and backend
view of your phone app by clicking the “Designer” button and “Blocks” button.

From the backend view, create your program using blocks as illustrated in Figure 12.8.
To compile your program, select “Build ‐> App (provide QR code for .apk)” as shown in
Figure 12.9. After successful compilation, a 2D QR code will pop up, as shown in
Figure 12.10. Use your mobile phone to scan the QR code to install the phone app.

Figure 12.6  The schematic circuit diagram of the voice‐controlled door access project.

http://ai2.appinventor.mit.edu

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™232

Figure 12.7  The MIT AI2 project development web page, Designer view (frontend).

Figure 12.8  The MIT AI2 project development web page, Blocks view (backend).

IoT Projects with Arm® Mbed™ 233

Figure 12.9  The MIT AI2 project compilation.

Figure 12.10  The QR code of MIT AI2 project.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™234

In this example, when the button is clicked, a “SpeechRecognizer” is activated, which
will listen to what you speak and convert it to text, shown in the label. If what you said
is a secret phrase, e.g., “open sesame”, it will send a web request “http://x.x.x.x/
q=open+sesame” to you FRDM‐K64F development board, where “x.x.x.x” should be
the IP address of your board.

Following is the corresponding code for the mbed board. It runs a “web_server()”
function to listen for HTTP request messages at port 80. When a request is received, it
looks for the key phrase “q=open+sesame” in the request message. If found, it then
replies “Door Open”; otherwise, it replies “Door Not Open.” Figure 12.11 shows the
corresponding terminal outputs.

In this example, you will need to import Servo library:
https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//

classServo.html

**
// Example 12.8

#include "mbed.h"
#include "EthernetInterface.h"
#include <stdio.h>
#include <string>
#include "rtos.h"
#include "Servo.h"

#if defined(TARGET_K64F)
 Servo myservo(D9);

Figure 12.11  The Tera Term output of the program.

https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//classServo.html
https://developer.mbed.org/users/simon/code/Servo/docs/36b69a7ced07//classServo.html

IoT Projects with Arm® Mbed™ 235

#elif defined(TARGET_LPC1768)
 Servo myservo(p21);
#endif

#define PORT 80

void web_server(void const *args)
{
 TCPSocketServer server;
 TCPSocketConnection client;

 server.bind(PORT);
 server.listen();

 while(true){
 printf("Waiting for connection...\r\n");
 int32_t status = server.accept(client);
 printf("Connection from: %s\r\n", client.get_address());

 if (status>=0)
 {
 char buffer[1024] = {};
 int n= client.receive(buffer, 1023);
 printf("Received Data:
%d\n\r\n\r%.*s\n\r",strlen(buffer),strlen(buffer),buffer);

 //GET /q=open+sesame HTTP/1.1
 char item[13];
 for(int k=0; k<13; k++){
 item[k]= buffer[k+5];
 }

 char Body[1024] = {};

 if (strcmp(item,"q=open+sesame")==0){
 sprintf(Body,"<html><title></title><body><h1>Door
Open</h1></body></html>\n\r\n\r");
 //move the servo to open the door,
 myservo = 1;
 // wait for 5 seconds, close the door
 wait(5);
 //close the door
 myservo = 0;
 }
 else{
 sprintf(Body,"<html><title></title><body><h1>Door Not
Open</h1></body></html>\n\r\n\r");

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™236

 //do nothing with the door
 }

 char Header[256] = {};
 sprintf(Header,"HTTP/1.1 200 OK\n\rContent-Length: %d\n\rContent-
Type: text/html\n\rConnection: Keep-Alive\n\r\n\r",strlen(Body));
 client.send(Header,strlen(Header));
 client.send(Body,strlen(Body));

 client.close();
 }
 }
}
int main() {
 EthernetInterface eth;
 eth.init();
 eth.connect();
 printf("\r\nServer IP Address is %s\r\n", eth.getIPAddress());

 //close the door
 myservo = 0;
 //wait for instructions
 web_server("");
 while(1){}
}
**

You can also test your program using a web browser; just type in “http://x.x.x.x/
q=open+sesame” as the URL to connect to your FRDM-K64F development board,
where “x.x.x.x” should be the IP address of your board. You should get the same results.

Further Information about MIT App Inventor 2:

http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/ai2/tutorials.html

Further Information about mbed Servo Motor:

https://os.mbed.com/users/4180_1/notebook/an-introduction-to-servos/
https://os.mbed.com/cookbook/Servo
https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07/classServo.html

Exercise 12.5 

Modify the above example so that it also checks the client’s IP address, and only
messages from allowed client addresses can be accepted.

http://appinventor.mit.edu/explore/
http://appinventor.mit.edu/explore/ai2/tutorials.html
https://os.mbed.com/users/4180_1/notebook/an-introduction-to-servos/
https://os.mbed.com/cookbook/Servo
https://os.mbed.com/users/simon/code/Servo/docs/36b69a7ced07/classServo.html

IoT Projects with Arm® Mbed™ 237

12.4  RFID Reader

RFID is promising technology that has been increasingly used for tracking and identifi-
cation. In this project, we will illustrate how to use FRDM-K64F development board
and SunFounder 13.56 MHz RC522 RFID reader and tags kit (Figure 12.12) to make an
RFID reader.

Hardware Required
●● Arm® Mbed™ FRDM-K64F development board
●● RC522 RFID reader and tags
●● Mini USB cable and Ethernet cable

Software Required
●● An Internet browser

Figure 12.13 shows the wiring of FRDM-K64F development board and RFID-RC522
reader.

Procedure
Following is an example code for the RFID reader. It first initializes the RFID reader
using the “RFID.PCD_Init()” function, then uses the “RFID.PICC_IsNewCardPresent()”
function to check if a new RFID tag is present. It uses the “RFID.PICC_ReadCardSerial()”
to read the information out of the tag, and finally, prints out the details (Figure 12.14).

In this program, you will need the RFID MFRC522 Library:

https://os.mbed.com/users/AtomX/code/MFRC522/

Figure 12.12  The SunFounder 13.56 MHz RFID-RC522 reader and RFID tags kit.

https://os.mbed.com/users/AtomX/code/MFRC522/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™238

Figure 12.13  The wiring of FRDM-K64F development board and RFID-RC522 reader.

Figure 12.14  The output of RFID-RC522 reader.

IoT Projects with Arm® Mbed™ 239

**
// Example 12.9

#include "mbed.h"
#include "MFRC522.h"

//MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCK, SPI_CS, MF_RESET);
MFRC522 RFID (D11, D12, D13, D10, D8);

int main(void) {
 printf("Touch a RFID card...\r\n");

 // Init. RC522 Chip
 RFID.PCD_Init();

 while (true) {

 // Look for new cards
 if (! RFID.PICC_IsNewCardPresent())
 {
 wait_ms(500);
 continue;
 }

 // Select one of the cards
 if (! RFID.PICC_ReadCardSerial())
 {
 wait_ms(500);
 continue;
 }

 // Print Card UID
 printf("Card UID: ");
 for (uint8_t i = 0; i < RFID.uid.size; i++)
 {
 printf(" %d", RFID.uid.uidByte[i]);
 }
 printf("\n\r");
 // Print Card type
 uint8_t piccType = RFID.PICC_GetType(RFID.uid.sak);
 printf("PICC Type: %s \n\r", RFID.PICC_GetTypeName(piccType));

 wait_ms(500);
 }
}
**

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™240

With the RFID reader you can also create an access control, such as door access con-
trol, depending on the tags, and door access can be granted or refused. In the following
example, a list of tag IDs that can be granted for access is created in an array called “int
cards[][4]”. If the tag’s ID matches one of the IDs in the list, it will display “Welcome!”
and “LedGreen” will light up; otherwise, it will display “Not Allowed!” and “LedRed” will
light up. Figure 12.15 shows the corresponding terminal output.

**
// Example 12.10

#include "mbed.h"
#include "MFRC522.h" //https://developer.mbed.org/users/AtomX/code/
MFRC522/

DigitalOut LedRed(LED1);
DigitalOut LedGreen(LED2);

//MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCK, SPI_CS, MF_RESET);
MFRC522 RFID (D11, D12, D13, D10, D8);

int cards[][4] = {
 {241,131,29,43}, // card 1
 {98,225,42,38} // card 2
};
bool access = false;

Figure 12.15  The output of RFID-RC522 reader.

http:////https://developer.mbed.org/users/AtomX/code/MFRC522/
http:////https://developer.mbed.org/users/AtomX/code/MFRC522/

IoT Projects with Arm® Mbed™ 241

int main(void) {
 printf("starting...\n");

 // Init. RC522 Chip
 RFID.PCD_Init();

 while (true) {
 LedRed = 1;
 LedGreen = 1;

 // Look for new cards
 if (! RFID.PICC_IsNewCardPresent())
 {
 wait_ms(500);
 continue;
 }

 // Select one of the cards
 if (! RFID.PICC_ReadCardSerial())
 {
 wait_ms(500);
 continue;
 }

 // Print Card UID
 printf("Card UID: ");
 for (uint8_t i = 0; i < RFID.uid.size; i++)
 {
 printf(" %d", RFID.uid.uidByte[i]);
 }
 printf("\n\r");
 // Print Card type
 uint8_t piccType = RFID.PICC_GetType(RFID.uid.sak);
 printf("PICC Type: %s \n\r", RFID.PICC_GetTypeName(piccType));

 for(int x = 0; x < sizeof(cards); x++){
 for(int i = 0; i < sizeof(RFID.uid.size); i++){
 if(RFID.uid.uidByte[i] != cards[x][i]) {
 access = false;
 break;
 } else {
 access = true;
 }
 }
 if(access) break;

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™242

 }
 if(access){
 printf("Welcome!\n\r");
 LedGreen = 0;
 } else {
 printf("Not allowed!\n\r");
 LedRed = 0;
 }

 wait_ms(500);
 }
}
**

Further Information about RFID RC522:

https://os.mbed.com/users/kirchnet/code/RFID-RC522/
https://os.mbed.com/users/nivmukka/code/Personal-Alert-System-using-RFID-with-FR/
https://www.sunfounder.com/wiki/index.php?title=Mifare_RC522_Module_RFID_Reader

12.5  Cloud Example with IBM Watson Bluemix

IBM Watson IoT Platform is a powerful cloud-based platform that allows you rapidly
create analytics applications, visualization dashboards, and mobile IoT apps. With
Arm® Mbed™ IBM Ethernet IoT Starter Kit, you can easily connect to IBM Watson IoT
platform.

Hardware Required
●● Arm® Mbed™ Ethernet IoT Start Kit (FRDM-K64F + mbed application shield)
●● Mini USB cable and Ethernet cable

Software Required
●● An Internet browser

Procedure
Just connect your IoT Starter Kit to your computer through USB, and to the Internet
through an Ethernet cable. From the following link (also see Figure 12.16), import the
“IBMIoTClientEthernetExample” program into your online compiler, compile it, and
load it up to your board. This program will send an accelerometer, temperature sensor,

Exercise 12.6 

Modify the above example so that it only allows the access of a certain RFID card
between 9 a.m. and 5 p.m.

https://os.mbed.com/users/kirchnet/code/RFID-RC522/
https://os.mbed.com/users/nivmukka/code/Personal-Alert-System-using-RFID-with-FR/
https://www.sunfounder.com/wiki/index.php?title=Mifare_RC522_Module_RFID_Reader

IoT Projects with Arm® Mbed™ 243

joystick, potentiometer 1 and 2 data to IBM Water IoT platform by MQTT. It also dis-
plays an information menu on the LCD. You can use a joystick to roll up and down the
menu to get information on device ID, MQTT status, Ethernet status, socket status, and
IP address, for example.

https://os.mbed.com/platforms/IBMEthernetKit/

12.5.1  IBM Quickstart Service

By default, the example program uses IBM Quickstart Service to send the data, you can
view the by going to the following website (also see Figure 12.17). No registration is
needed.

https://ibm.biz/iotqstart/

Just type in the correct device ID, and click the “Go” button. Your device ID is basi-
cally the MAC address, you can get your device ID from the LCD menu display by
rolling up or down the joystick. Now you should see all the sensor data, and the corre-
sponding chart display. You can select which sensor data to display in the chart, as
shown in Figure 12.18.

Figure 12.16  The IBM IoT Client Ethernet Example program page.

https://os.mbed.com/platforms/IBMEthernetKit/
https://ibm.biz/iotqstart/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™244

Figure 12.17  The IBM Quickstart Service page.

Figure 12.18  The IBM Quickstart Service chart and data display.

IoT Projects with Arm® Mbed™ 245

12.5.2  IBM Registered Service (Bluemix)

To create your own application for viewing and processing your data you will need to
register on IBM Watson Bluemix website:

https://console.ng.bluemix.net/

You can register for a 30-day free trial account (Figure 12.19). After 30 days, you will
need to continue with credit card details, but as long as the number of devices con-
nected and the data metric are less than certain levels, it is still free. See IBM pricing
website for details:

https://www.ibm.com/internet-of-things/platform/pricing/

Just follow the instruction and register and log in. After logging in, you will be asked
to choose your country and create an organization and project name, as shown in
Figure 12.20. In this case, the country is “UK,” organization is “London South Bank
University,” and project name is “IoT Projects.” Then click the blue “Create App” button
to create your application program.

This will bring you to the IBM Watson catalog page. Select the “Internet of Things
Platform Starter” within the Boilerplates (Figure 12.21). Boilerplates are simply the
ready-made software modules that can be reused in your applications.

Figure 12.19  The IBM Bluemix registration and login page.

https://console.ng.bluemix.net/
https://www.ibm.com/internet-of-things/platform/pricing/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™246

Figure 12.20  You Bluemix homepage after login.

Figure 12.21  The available Boilerplates in IBM Bluemix catalog page.

IoT Projects with Arm® Mbed™ 247

This will bring you to a new page. Provide names to your Application and Host, then
click on the “Create” button (Figure 12.22). This will take a few minutes to create your
application. When it is ready, click the application URL to open the Node-RED Internet
of Things landing page (Figure 12.23).

Click “Go to you Node-RED flow editor” button, a default IBM IoT QuickStarter
Node-RED program page will appear (Figure 12.24). There are two parts, or two flows
in the program. The top flow allows you to send data to the IBM Ethernet IoT Starter
Kit, the bottom flow allows you to receive temperature data from the Starter Kit. To
make the program work, click the blue “IBM IoT App In” block in the bottom flow, a
configuration panel will appear (Figure 12.25), just type in the correct device ID. Please
ensure the “Authentication” is “Quickstart”.

When the device ID is corrected configured, select the green “device data” block,
then click the “debug” tab on the right-hand side of the page, you should be able to see
the temperature readings starting coming in, as shown in Figure 12.26.

Click the “temp thresh” block, this allows you to set a temperature threshold, if the
temperature goes above this threshold it will display a warning (Figure 12.27).

You can also read potentiometer from the Starter Kit. Just drag a function block from
the left “function” panel, put it under the bottom flow, and wired it up with the blue
“IBM IoT App In” block, as shown in Figure 12.28. Click the function block and enter the
configuration information as shown in Figure 12.29.

From the left “output” panel, drag a debug block into the bottom flow, change it to “msg.
payload”, and connect it to the “Potentiometer 1” function block, as shown in Figure 12.30.

Figure 12.22  Application creation page.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™248

Figure 12.23  The Bluemix Node-RED homepage.

Figure 12.24  The default IBM IoT Node-RED application page.

IoT Projects with Arm® Mbed™ 249

Figure 12.25  The configuration of Device Id of the blue “IBM IoT App In” block.

Figure 12.26  The configuration of Device Id of the blue “IBM IoT App In” block.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™250

Figure 12.27  The temperature threshold configuration of the “temp thresh” block.

Figure 12.28  Add a function block to the bottom flow.

IoT Projects with Arm® Mbed™ 251

Figure 12.29  The configuration of the “Potentiometer 1” function block.

Figure 12.30  Add a debug block to “Potentiometer 1” function block.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™252

Now select the green “msg.payload” block, then click the “debug” tab on the right hand
side of the page, you should be able to see the potentiometer 1’s readings starting com-
ing in, as shown in Figure 12.31.

12.5.3  Add IBM Watson IoT Service to Your Application

To add the IBM Watson Internet of Things Bluemix Service to your application, select
the Internet of Things Platform service on the Bluemix catalog (Figure 12.32).

Click the blue “Create” button in the bottom left corner.
Select to “Restage” your application when prompted, as shown in Figure 12.33.
Select the Internet of Things Platform service that has been created (Figure 12.34).

This will take you to the Internet of Things Service dashboard (Figure 12.35).
Click “+ Create New Board” button on the top-right corner. This will allow you to add

new devices (Figure 12.36).

12.5.4  Add Your Mbed Device to Your Watson IoT Organization

From Figure 12.36, click the blue “+ Add Device” button on the top right corner. This
will bring you to create device type page, then enter the corresponding informations,
such as device type, device ID etc., click “Next” button after finishing each page (Figure
12.37–12.40).

Figure 12.31  The debug outputs from the “msg.payload” debug block.

IoT Projects with Arm® Mbed™ 253

Figure 12.32  The IBM Bluemix service catalog (top) and the Internet of Things Platform service
(bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™254

Figure 12.33  Restage your application.

Figure 12.34  The Internet of Things Service platform.

IoT Projects with Arm® Mbed™ 255

Figure 12.35  The Internet of Things Service dashboard.

Figure 12.36  Adding devices to your IoT application.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™256

Figure 12.37  Create Device Type—General Information.

Figure 12.38  Create Device Type—Define Template.

IoT Projects with Arm® Mbed™ 257

12.5.5  Adding Credentials onto Your Mbed Device

You can now get your device credentials, as shown in Figure 12.41. Copy them and add
them to your IBM IoT Client Ethernet Example program code, as shown in Figure 12.42.
Compile and run the program on your mbed device. The device will now run in regis-
tered mode.

Now you should be able to see all your sensor information of the mbed board from
your IBM Bluemix application, as shown in Figure 12.43.

12.5.6  Link Your IBM IoT Watson Application to Your Mbed Device

From the IBM Bluemix dashboard, as shown Figure 12.44, select your application and
click the application URL to open the Node-RED landing page. Select “Go to your Node-
RED flow editor” button to view your application. Double-click the “IBM IoT App In”
node in the flow editor and configure the node with correct device type and device ID,
as shown in Figure 12.45. Please ensure the “Authentication” is “Bluemix Service.”

Click the red “Deploy” button to run your application.
Now you should be able to see your mbed device and the corresponding sensor read-

ings from Device-Centric Analytics page, as shown in Figure 12.46.

Figure 12.39  Create Device Type—Submit Information.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™258

Figure 12.40  Add Device—Device Info (top) and Add Device—Summary (bottom).

IoT Projects with Arm® Mbed™ 259

Figure 12.41  Your Device Registration Credentials.

Figure 12.42  Using your device credentials in your mbed program.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™260

Figure 12.43  The sensor information of your mbed device on your IBM Bluemix application.

Figure 12.44  Your IBM Bluemix dashboard.

IoT Projects with Arm® Mbed™ 261

12.5.7  Sending Commands from Your IBM IoT Watson Application to Your
Mbed Board

From your Node-RED editor, navigate to the menu at the top right of the screen and
select “Import” → “Clipboard,” as shown in Figure 12.47.

Copy the JSON string from the link below and paste it into the dialog box in Node-
RED and select “Import,” and the imported JSON code should generate a new sub-flow,
as illustrated in Figure 12.48.

https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/
ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_
mc_sid_50200000=1484906035

Connect “blick rate” node with “Potentiometer 1”, as shown in Figure 12.49.
Double-click the “IBM IoT Out” node, and enter corresponding configuration infor-

mation, as shown in Figure 12.50. When finished, click “Deploy” button to activate the
program.

Now, by twisting the potentiometer 1, you should be able to change the flashing rate
of the blue LED. Figure 12.51 shows the corresponding terminal outputs.

12.5.8  More with Node-RED

From your Node-RED editor, navigate to the menu at the top right of the screen and
select “Manage palette,” as shown in Figure 12.52.

An “Install” tab will appear on the left hand side of Node-RED editor, as shown in
Figure 12.53. Search for “dashboard” and select “node-red-dashboard,” and click the red
button “Done.”

The Node-RED dashboard module should now be installed and appear at the left side
of the Node-RED editor, as shown in Figure 12.54. As you can see, there is a whole range
of gadgets available, e.g., buttons, switches, sliders, gauges, forms, charts etc.

Figure 12.45  Your IBM Watson IoT Application Node-RED page.

https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035
https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035
https://raw.githubusercontent.com/ibm-messaging/iot-device-samples/master/mbed/ARM-mbed-Blink-LED.json?cm_mc_uid=14431715020414847496313&cm_mc_sid_50200000=1484906035

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™262

Figure 12.46  Device-Centric Analytics page, with device info (top) and device properties (bottom).

IoT Projects with Arm® Mbed™ 263

Figure 12.55 shows adding a chart to the program, connected to the “temp” node,
and Figure 12.56 shows the corresponding display of the chart from the application
web page.

You can also send emails or Twitter messages using Node-RED. Figure 12.57 shows
how to add an “email” node (available under “social” category) to your program. In
this case, when the temperature is exceeding the threshold value, it will send you
an email.

Figure 12.58 shows how to add a “twitter” node (available under “social” category) to
your program and the corresponding configuration. In this case, when the temperature
exceeds the threshold value, it will send you a Twitter message.

Further Information about IBM Watson and IoT Starter Kit:

https://console.ng.bluemix.net/docs/starters/IoT/iot500.html
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-

platform-/?ALLSTEPS
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-1/
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-2/

Figure 12.47  Import menu in Node-RED.

https://console.ng.bluemix.net/docs/starters/IoT/iot500.html
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-platform-/?ALLSTEPS
http://www.instructables.com/id/Making-a-IoT-cloud-service-with-ARM-mbed-platform-/?ALLSTEPS
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-1/
https://developer.ibm.com/recipes/tutorials/arm-mbed-iot-starter-kit-part-2/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™264

Figure 12.48  Import JSON code using the clipboard in Node-RED (top) and the new imported flow in
Node-RED.

IoT Projects with Arm® Mbed™ 265

Figure 12.50  The configuration information of “IBM IoT Out” node.

Figure 12.49  Connect “blick rate” node with “Potentiometer 1.”

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™266

Figure 12.51  The corresponding Tera Term outputs.

Figure 12.52  The “Manage palette” menu in Node-RED editor.

IoT Projects with Arm® Mbed™ 267

Figure 12.54  The “dashboard” module in Node-RED editor.

Figure 12.53  The “Install” tab on the left in Node-RED editor.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™268

Figure 12.55  Adding a “chart” node to the program in Node-RED editor.

Figure 12.56  The “chart” display.

IoT Projects with Arm® Mbed™ 269

Figure 12.57  Adding “email” node to your program (top) and the corresponding email configurations
(bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™270

Figure 12.58  Adding “twitter” node to your program (top) and the corresponding Twitter
configurations (bottom).

IoT Projects with Arm® Mbed™ 271

12.6  Real-Time Signal Processing

In many applications, such as real-time voice and signal processing, you will need to
read the analog input and process it as fast as possible. In this project, we will demon-
strate how to develop a real-time signal processing application by using fast analog
inputs and fast analog output.

Hardware Required
●● Arm® Mbed™ FRDM-K64F (or LPC1768) development board
●● Mini USB cable and Ethernet cable
●● PicoScope (https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview)

Software Required
●● An Internet browser

Procedure
The following example uses A0 as the analog input (for LPC1768 is P17) and uses the
Timer to record the time. It first use a while loop to read 4096 data points from the
analog input, it also use Timer’s “read_us()” function to get the time in microseconds,
then it uses a for loop to print the time (seconds) and data to computer through virtual
COM port.

**
// Example 12.11

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p17);
#endif

Timer t;
double t1=0,t0=0,tp=0;

int main(void)
{
 t.start();
 t0=t.read_us();
 int i=0;
 double dt[4096];
 double val[4096];
 printf("Recording..................\r\n");
 while (i<4096) {
 val[i]=ain.read();
 t1=t.read_us()-t0;

https://www.picotech.com/oscilloscope/2000/picoscope-2000-overview

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™272

 dt[i]=((t1)*0.000001);
 tp=t1;
 i++;
 }
 printf("Printing.................\r\n");
 for(i=0;i<4096;i++){
 printf("%f\t%f\r\n",dt[i],val[i]);
 }
 printf("Done.......................\r\n");
}
**

Figure 12.59 shows the corresponding Arduino Serial Monitor outputs. The first col-
umn shows the time in seconds, and the second column shows the analog input values.
As we can see, it can read the input as fast as about 0.00002 s, or 20 µs—that is, about
50 KHz!

Figure 12.59  The Arduino Serial Monitor outputs.

Exercise 12.7 

Modify the above program so that it saves the time and data values to a text file on an
SD card (for LPC1768, local file system).

IoT Projects with Arm® Mbed™ 273

For LPC1768 development board, there is a FastAnalogIn library; see the following
link. It uses the burst feature to read analog input at the background.

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

The following example uses FastAnalogIn library to read analog input from P15 pin.
It also uses Timer to get the time information. It first start the time, then uses a “for”
loop to read in 4096 data points (as 16-bit integers), and then uses another “for” loop to
write the time (microseconds) and data to a text file called “out2.txt”.

**
// Example 12.12

#include "mbed.h"
#include "FastAnalogIn.h"

FastAnalogIn input1(p15);
Timer t;
LocalFileSystem local("local");
struct packet{
 int times[4096];
 uint16_t samples1[4096];
};
int main() {
 t.start();
 packet sample_data;
 for(int i=0; i<4096; i++) {
 sample_data.times[i] = t.read_us();
 sample_data.samples1[i] = input1.read_u16();
 }
 FILE *fp = fopen("/local/out2.txt", "w");
 for(int i=0;i<4096;i++){
 fprintf(fp, "%d\t%d\r\n",sample_data.times[i],sample_
data.samples1[i]);
 }
 fclose(fp);
}
**

Figure 12.60 shows the content of “out2.txt.” The first column is the time (microsec-
onds) and the second column is data (as 16-bit integers). As we can see, it can read data
as fast as 2 us, or an impressive 500 KHz! That is about 10 times faster than normal
analog inputs!

But unfortunately, the FastAnalogIn library only support a few development boards:

●● LPC1768
●● LPC4088
●● LPC11u24

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™274

●● KLxx
●● K20D50M

and FRDM-K64F is not supported.
The following example demonstrates how to generate fast analog outputs, but setting

the analog output pin DAC0_OUT (for LPC1768 is P18) to 0.5 (1.65V) and 0 (0V) alter-
natively without any delay.

**
// Example 12.13

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogOut aout(DAC0_OUT);
#elif defined(TARGET_LPC1768)
 AnalogIn aout(p18);
#endif

int main(void)
{
 while (1) {
 aout.write(0.5f); // or aout = 0.5f;
 aout.write(0.0f);
 }
}
**

Figure 12.60  The content of out2.txt file.

IoT Projects with Arm® Mbed™ 275

Again, we can observe the analog output by using an oscilliscope. Figure 12.61 shows
the corresponding PicoScope output. The results show that we can set analog output as
fast as 666.7 Hz.

By combining the fast analog input and fast output, we can make a very useful pro-
gram that can perform real-time signal processing. The following example reads the
analog input (val), then updates the (vals), which is calculated by using 20% of (val) and
80% of previous (vals). This is the equivalent of applying a low-pass filter that can
smooth out the data and remove high-frequency spikes, and finally, pass the (vals) to
analog output. In this case, the analog output is the limiting factor, so the program
should be able to process voice and signals up to 666.7 Hz.

**
// Example 12.14

#include "mbed.h"

#if defined(TARGET_K64F)

Figure 12.61  The PicoScope output of analog output.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™276

 AnalogIn ain(A0);
 AnalogOut aout(DAC0_OUT);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p17);
 AnalogIn aout(p18);
#endif

int main(void)
{
 double val=0;
 double vals=0;

 while (true) {
 val=ain.read();
 vals = 0.2*val + 0.8*vals; //low-pass filter smoothing
 aout.write(vals);
 }
}
**

The following example reads two analog inputs A0 and A1 (for LPC1768 are P16 and
P17), and calculates a weighted average, 30% of A0 and 70% of A1, and writes the value
to analog output.

**
// Example 12.15

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogIn ain1(A0);
 AnalogIn ain2(A1);
 AnalogOut aout(DAC0_OUT);
#elif defined(TARGET_LPC1768)
 AnalogIn ain1(p16);
 AnalogIn ain2(p17);
 AnalogIn aout(p18);
#endif

int main(void)
{
 while (true) {
 aout = 0.3*ain1.read()+ 0.7*ain2.read();
 }
}
**

IoT Projects with Arm® Mbed™ 277

The following example reads the analog input A0 (for LPC1768 is P16), delays nine
times, and writes the value to analog output.

**
// Example 12.16

#include "mbed.h"

#if defined(TARGET_K64F)
 AnalogIn ain(A0);
 AnalogOut aout(DAC0_OUT);
#elif defined(TARGET_LPC1768)
 AnalogIn ain(p17);
 AnalogIn aout(p18);
#endif

int main(void)
{
 double val[10];
 int i=0;
 while (true) {
 val[i%10] = ain.read();
 if(i>=10){
 aout.write(val[i-1]);
 }
 i++;
 }
}
**

Further Information about FastAnalogIn:

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

12.7  Summary

This chapter provides some IoT project examples using the Arm® Mbed™ Ethernet IoT
Starter Kit, such as, temperature monitoring over the Internet, smart lighting, voice-
controlled door access, RFID reader, cloud example using IBM Watson Bluemix, and
fast analog inputs and outputs.

Exercise 12.8 

Modify the above program so that it reads analog input A0 and A1, delays A1 nine
times, and writes the average value to analog output.

https://os.mbed.com/users/Sissors/code/FastAnalogIn/

Part IV

Appendices

In This Part
Appendix A: Example Codes
Appendix B: HiveMQ MQTT Broker
Appendix C: Node‐RED on Raspberry Pi
Appendix D: String Operations
Appendix E: Useful Resources

279

281

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

A

All the example codes used in this book are available on the following website:
http://www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

To use these example codes from your online compiler, just click the “Import!” button
on the top left menu. An “Import Wizard” will be displayed in the middle, select the
“Upload” tab, and an “Choose File” button will appear at the bottom (Figure A.1).
Please note that the “Import!” button on the top right corner of “Import Wizard” panel
is disabled.

Click the “Choose File” button and navigate to the directory that you have downloaded
your example code files to. Select the example file you want to import and click “Open”
button (Figure A.2). All the example codes are compressed in zipped format.

Example Codes

Figure A.1  Import example code from the online compiler.

http://www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™282

Figure A.2  Choose the example code file to import.

The selected file will then appear in the “Upload” tab. Now, the “Import!” button on
the top right corner of “Import Wizard” panel should be enabled. Click the “Import!”
button to import the file (Figure A.3).

Figure A.3  Import example code by clicking the “Import!” button.

A  Example Codes 283

An “Import Programs” pop‐up window will appear, through which you can change the
import name if you want to (Figure A.4).

The example program should now be imported, and now you can compile and run it
(Figure A.5).

Figure A.4  The “Import Programs” pop‐up window.

Figure A.5  The imported example program.

285

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

B

HiveMQ MQTT Broker is a very popular MQTT software that provides Websocket,
security, and Socket services. We will use HiveMQ as an example to illustrate how to
install and configure a MQTT broker software.

Just go to the HiveMQ website, as shown in Figure B.1, and follow the instructions to
download the software and unzipped to any folder, as shown in Figure B.2. In this case,
it is downloaded and unzipped to “This PC > Downloads” folder. Go to the HiveMQ’s
“bin” directory and double‐click “run” file to run HiveMQ MQTT broker software. If
everything is fine, you will see the software screen outputs like Figure B.3. As we did
not purchase any licenses, it is limited to 25 connections.

HiveMQ MQTT Broker

Figure B.1  The HiveMQ MQTT broker website.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™286

Figure B.2  The HiveMQ MQTT broker software folder.

Figure B.3  The HiveMQ MQTT broker software screen outputs.

HiveMQ MQTT software builds on Java, so if you have not got the Java development
kit software installed on your computer, you will need to download and install Java JDK
(not JRE) software from its Oracle website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

B  HiveMQ MQTT Broker 287

To test the HiveMQ MQTT broker, you will need MQTT client software. Eclipse
Paho is one of the most popular MQTT client software options. To use it, just go to the
Eclipse Paho website and follow the instructions to download and install the software,
as shown in Figure B.4.

Figure B.4  The Eclipse Paho website (top) and the corresponding download page (bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™288

Figure B.5 shows the output of Eclipse Paho MQTT client software. As you can see, you
should be able to connect to the MQTT broker (tcp://localhost:1883), subscribe to a topic,
in this case, called “Perry Test,” specify the QoS level (0, 1, or 2), and publish the message.

You can also install several plugins to make the HiveMQ software more interesting.
As shown in Figure B.6, from the “Extensions” menu, such as “Security Plugins” and

Figure B.5  The Eclipse Paho MQTT client software outputs.

Figure B.6  The HiveMQ MQTT broker software plugins.

B  HiveMQ MQTT Broker 289

“MQTT Message Log” (inside the Monitoring Plugins). Just download and unzip the
corresponding files to HiveMQ software’s plugin folder, as shown in Figure B.7.

To implement security plugins, you need to modify the file “credentials.properties” in
the plugins folder, as shown in Figure B.8. In this example, we added a new user called
“perry” and password is “1111.”

Alternatively, you can also use the “file‐authentication‐plugin‐utility‐1.1.jar” program
in the plugins folder to manually add, configure, list, and remove users, as shown in
Figure B.9. Just open the command prompt terminal program and from the plugins
folder, run the following Java command:
java ‐jar utility/file‐authentication‐plugin‐utility‐1.1.jar

Figure B.7  The HiveMQ MQTT broker software plugins folder.

Figure B.8  Modification of the “credentials.properties” file.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™290

To make the changes take effect, you need to re‐run the HiveQM MQTT broker soft-
ware, as we did before, shown in Figures B.2 and B.3.

Now, if you go back to the Eclipse Paho MQTT client software as shown Figure B.5,
you will get an error message when you are trying to connect the HiveMQ MQTT
broker. To get authenticated, from the “Options” tab in Paho software, tick the “Enable
Login” checkbox and type in the username (perry) and password (1111). Go back to the
“MQTT” tab; you should now be able to connect the broker and publish messages.

The “MQTT Message Log” plugin logs all the activities, users, and messages in a log
file under the HiveMQ “log” sub‐folder.

HiveMQ software can also provide WebSocket services. To activate the WebSocket
service, go to the HiveMQ software folder, go to “conf” ‐> “examples” ‐> “configuration”
sub‐folder (Figure B.10), copy the file called “config‐sample‐mqtt‐and‐websockets.xml,”
paste it back to the “conf” folder, and rename it to “config.xml”. Figure B.11 shows the
content of the file, where WebSocket is provided on port 8000.

The “config.xml” file is the main configuration file for the HiveMQ software. If you
want to keep the original “config.xml” file, you should copy it to somewhere else, or
rename it first.

Figure B.9  User management using file‐authentication‐plugin‐utility‐1.1.jar program.

B  HiveMQ MQTT Broker 291

Re‐run the HiveQM MQTT broker software. It should now have the WebSocket ser-
vice enabled, at port 8000 (Figure B.12).

To test the WebSocket service, you can use the HiveMQ WebSocket online client
page (Figure B.13). You should be able to connect to the local host WebSocket service
and send WebSocket messages. You can also view the WebSocket activities from the
HiveQM terminal window, as shown in Figure B.14.

Further Information about HiveMQ MQTT:

http://www.hivemq.com/resources/getting‐started/
http://www.hivemq.com/blog/hivemq‐mqtt‐websockets‐support‐message‐log‐plugin‐2‐min
http://www.hivemq.com/plugin/file‐authentication/
http://www.hivemq.com/demos/websocket‐client/

Figure B.10  The “config‐sample‐mqtt‐and‐websockets.xml” file in the “conf/examples/configuration”
sub‐folder.

http://www.hivemq.com/resources/getting-started/
http://www.hivemq.com/blog/hivemq-mqtt-websockets-support-message-log-plugin-2-min
http://www.hivemq.com/plugin/file-authentication/
http://www.hivemq.com/demos/websocket-client/

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™292

Figure B.11  The content of the “config.xml” file with WebSocket service (port 8000).

B  HiveMQ MQTT Broker 293

Figure B.12  The HiveMQ MQTT broker software screen outputs with WebSocket service enabled at
port 8000.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™294

Figure B.13  The HiveMQ WebSocket online client.

Figure B.14  The HiveMQ MQTT broker software screen outputs with WebSocket messages.

295

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

C

Raspberry Pi is an excellent kit for learning. So if you have a one, you can also use
Node‐RED using Raspberry Pi, as the latest Raspberry Pi operating system Raspbian
Jessie has Node‐RED installed by default.

If you do not have the latest Raspberry Pi operating system, you can download it from
the following website, as shown in Figure C.1.

https://www.raspberrypi.org/downloads/
You can also follow the instructions to install Node‐RED by yourself, if it has not been

installed.
https://howtonode.org/how‐to‐install‐nodejs

Node‐RED on Raspberry Pi

Figure C.1  Raspberry Pi operating system download page.

https://www.raspberrypi.org/downloads/
https://howtonode.org/how-to-install-nodejs

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™296

To install Node‐RED, you need to install “Node.js” and “npm” packages first. From
the Raspberry Pi desktop, just open a terminal software and type the following
commands:

$ sudo apt‐get update
$ sudo apt‐get install nodejs
$ sudo apt‐get install npm

Once you have Node.js installed, just use the following commands to install and run
Node‐RED:

$ sudo npm install ‐g node‐red
$ node‐red

When you are working with many devices, it is easier to access Raspberry Pi using
SSH or using a remote desktop, as this saves the hassle of having an extra monitor.

Raspberry Pi disabled the SSH by default. To enable it, go from main menu ‐>
“Preferences” ‐> “Raspberry Pi Configuration”. A configuration window will appear,
and from the “Interfaces” tab, make sure SSH is enabled, as shown in Figure C.2. Now
you should be able to remote login to Raspberry Pi using SSH with any terminal soft-
ware such as, putty.exe, Tera Term, etc.

To connect to Raspberry Pi using a remote desktop, you will need to install “xrdp” and
“tightvncserver” packages first. To start from scratch, first remove the existing remote
desktop software, if there is any:
$ sudo apt‐get remove xrdp vnc4server tightvncserver

Then install “tightvncserver” and “xrdp” software,

$ sudo apt‐get install tightvncserver
$ sudo apt‐get install xrdp

Now you can use the Windows remote desktop to connect to Raspberry Pi using its
IP address. After typing in the username and password (default is pi and raspberry), you
should be able to connect to Raspberry Pi as shown in Figure C.3.

You can start the Node‐RED service by selecting Raspberry main menu ‐>
“Programming” ‐> “Node‐RED”. A Node‐RED console window will appear to confirm
that Node‐RED is running, as shown in Figure C.3.

Node‐RED is running as a web service. To test Node‐RED, open a web browser, and
type in “localhost:1880” as the URL. You will then see the Node‐RED UI (user inter-
face) as in Figure C.4. On the left is a node palette, which contains a set of nodes,
divided into several categories, such as “input,” “output,” “functions,” “social,” “analy-
sis,” etc. On the right is an output pane, which contains “debug” and “info” tabs. In the
middle is flow canvas, where you can create your Node‐RED programs. Each program
is called a flow, and the default name for your first program is called “Flow 1”. To cre-
ate a program is very easy; just drag in some nodes from the node palette, and wire
them up.

Let’s use a simple MQTT example program to illustrate how to program in Node‐
RED. From node palette, drag in a “mqtt” node from the “input” category, and a “debug”

C  Node‐RED on Raspberry Pi 297

node from the “output” category, wire them up as shown in Figure C.4 (top). Double‐
click the “mqtt” node to entre the configuration information as shown in Figure C.4
(bottom). This will connect to the HiveMQ MQTT broker we did in the previous
appendix, running on your computer at port number 1883. The IP address is your
computer IP address. It will subscribe to the topic “PerryTest.” In this example, it will
pick up any messages published to the topic “PerryTest,” and display it on the “debug”

Figure C.2  Raspberry Pi Configuration.

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™298

tab on the right. Now, click the red “Deploy” button on the top right to activate your
program.

To test your program, we can use the same Eclipse Paho MQTT client software on
your computer, as we did in the previous appendix. In this example, it published a mes-
sage “tttttt” to the topic “PerryTest.” The message appeared both on the Eclipse Paho
MQTT client, Figure C.5 (top), and Node‐RED program “debug” tab, Figure C.5
(bottom).

You can also publish messages to MQTT broker by adding the second flow to the
program. From the node palette, drag in an “injet” node from the “input” category, and
a “mqtt” node from the “output” category, and wire them up as shown in Figure C.6.
Please note that the “inject” changed its name to “timestamp” when it is placed on the
flow canvas. This node will send out a time stamp message. Double‐click the “mqtt”
node and enter the configuration. Again, click the red “Deploy” button on the top right
to activate your program.

Now, each time you press the “timestamp” node, it will publish a time stamp message
to the topic “PerryTest,” and the first flow will receive the message, as shown in the
“debug” tab in Figure C.7.

Figure C.3  Raspberry Pi remote desktop.

C  Node‐RED on Raspberry Pi 299

You may also want to install “Palette Manager,” which will allow you to install new
modules. Following are commands:

$ sudo apt‐get update
$ sudo apt‐get install npm
$ sudo npm i –g npm@2.x

Figure C.4  Node‐RED user interface (top) and Configuration of the “mqtt” node (bottom).

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™300

Figure C.5  Eclipse Paho MQTT client (top) and Node‐RED output (bottom).

After the installation, restart the Node‐RED. Then from the top right corner menu,
you will see the item called “Manage Palette” (Figure C.8), from which you would be
able to install modules such as Node‐RED Dashboard, as shown in Chapter 12,
section 12.5.3.

C  Node‐RED on Raspberry Pi 301

There are many interesting examples online, which you can try by importing them
using JSON (JavaScript Object Notation).

http://flows.nodered.org/
http://noderedguide.com/tag/example/
https://hub.jazz.net/project/sportshack/node‐red‐examples/overview

Figure C.6  Add a second flow to the program (top) and the configuration of “mqtt” output node
(bottom).

http://flows.nodered.org/
http://noderedguide.com/tag/example/
https://hub.jazz.net/project/sportshack/node-red-examples/overview

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™302

Further Information about Node‐RED:

http://noderedguide.com/
http://nodered.org/docs/hardware/raspberrypi.html

Figure C.7  The “debug” tab output of the program.

Figure C.8  The “Manage Palette” in the dropdown menu.

http://noderedguide.com/
http://nodered.org/docs/hardware/raspberrypi.html

303

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

D

String and/or array operations have always been an issue for many programmers, so in
this appendix, we provide a list of example codes for commonly used string and array
operations.

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Define Strings

char str[256] ;
strcpy (str,"hello world"); //str = ”hello world”;

or

char str[60] = “Hello World”;

or

char *str = “Hello World”;

‐‐--‐‐

Concatenate Strings (Merge Strings)

char str[80] = "hello ";
strcat (str,"world "); //merge “hello” and “world” into str

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Sub‐Strings

char *buff = "Hello World";
char* substr;
strncpy(substr, buff+7, 5); //begin index: 7 substring length: 5

String and Array Operations

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™304

‐‐‐--‐‐‐‐‐

String Length

char str[32] = "hello, world";
int n = strlen (str)

‐‐---‐‐

String to Float/Double (sscanf)

char *buff = "51.432";
double x;
sscanf(buff, "%f", &x);
printf("%f\n\r",x);

‐‐--‐‐‐‐

String to Float/Double (atof)

#include <cstdlib>
void main()
{
 float x;
 x = atof("3.14");
}

‐‐--‐‐‐‐

Read Numbers from a String

#include <stdio.h>

int main ()
{
 char sentence []="Tony 34 5.6";
 char str [20]; int x; float y;

 sscanf (sentence,"%s %*d %f",str,&x,&y);
 printf ("%s %d %f\n",str,x,y);

 return 0;
}

D  String and Array Operations 305

‐‐

Combine Strings and Numbers

char buffer[256];
float x = 3.5;
int y =20;
n=sprintf (buffer, "%s %f %d", “Tom”, x, y);

‐‐

Split String into Two

#include <string.h>

char *token;
char line[] = "Hello World";
char *search = " ";

// Token will point to "Hello".
token = strtok(line, search);

// Token will point to "World".
token = strtok(NULL, search);

‐‐

Split String into Many

#include <stdio.h>
#include <string.h>

int main ()
{
 char str[] ="- This, a sample string.";
 char * pch;
 printf ("Splitting string \"%s\" into tokens:\n",str);
 pch = strtok (str," ,.-");
 while (pch != NULL)
 {
 printf ("%s\n\r",pch);
 pch = strtok (NULL, " ,.-");
 }
 return 0;
}

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™306

‐‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Float to String

char buffer[50];
float x = 3.5;
n=sprintf (buffer, "%f", x);

‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Strings Array

char * const str[] = {
 "Hello",
 "World",
};
printf ("%s\t%s\n\r",str[0],str[1]);

‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Strings to Uppercase

#include<string.h>

int main() {
 char *str = "Hello World";
 strupr(str);
 printf("%s\n\r", str);

 return (0);
}

#include <stdio.h>
#include <ctype.h>

int main()
{
 int i = 0;
 char c;
 char str[] = "Hello World";

 while(str[i])
 {
 str[i]=toupper(str[i]);
 i++;
 }

 return(0);
}

D  String and Array Operations 307

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Strings to Lowercase

#include <string.h>
#include <ctype.h>

char *strlwr(char *str)
{
 unsigned char *p = (unsigned char *)str;

 while (*p) {
 *p = tolower((unsigned char)*p);
 p++;
 }

 return str;
}

‐‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Strings to Lowercase 2

#include <stdio.h>
#include <ctype.h>

int main()
{
 int i = 0;
 char c;
 char str[] = "Hello World";
	
 while(str[i])
 {
 str[i]=tolower(str[i]);
 i++;
 }

 return(0);
}

‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Compare Two Strings

char *c1 = "hello";
char c2 [] = "hello";

if (strcmp(c1,c2)==0){
 //do something
}

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™308

‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Compare Two Characters

#include "mbed.h"

Serial pc(USBTX, USBRX); // tx, rx

int main() {
 char c = pc.getc();
 if(c == 'a') {
 //do something
 }
}

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐

Integer Array

int age[4];

age[0]=14;
age[1]=13;
age[2]=15;
age[3]=16;

or

int arr [5] = {1,2,3,4,5};

for (int i=0; i<5;i++){
 printf("%d", arr[i]);
}
‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Integer 2D Array

int age[4][3];

age[0][0]=14;
age[1][0]=13;
age[2][0]=15;
age[3][0]=16;

age[0][1]=14;
age[1][1]=13;
age[2][1]=15;
age[3][1]=16;

age[0][2]=14;
age[1][2]=13;
age[2][2]=15;
age[3][2]=16;

D  String and Array Operations 309

or

int ages [3][4] = {
 {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}
};

‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Float Array

#include <stdio.h>

int main()
 float data[4096];
 for (int i=0;i<4096;i++)
 {
 data[i]=i*0.001;
 printf("%f\n\r", data[i]);
 }
 return 0;
}

‐‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐

Float 2D Array

#include <stdio.h>

int main()
 float data[4096][3];
 for (int i=0;i<4096;i++)
 {
 data[i][0]=i*0.001;
 data[i][1]=sin(i*0.001);
 data[i][2]=cos(i*0.001);
 printf("%10.2f \t %10.2f \t %10.2f \n\r", data[i][0],
data[i][1], data[i][2]);
 }
 return 0;
}

‐‐‐--‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

311

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

E

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Arm® Mbed™

https://www.arm.com/products/processors/instruction‐set‐architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

mbed YouTube Playlist

https://www.youtube.com/channel/UCNcxd73dSceKtU77XWMOg8A/playlists

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

C/C++ Reference

http://www.cplusplus.com/reference/
http://en.cppreference.com/w/
https://www.gnu.org/software/gnu‐c‐manual/gnu‐c‐manual.html

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

C/C++ Tutorial

http://www.cplusplus.com/doc/tutorial/
https://www.tutorialspoint.com/cplusplus/
http://www.cprogramming.com/begin.html

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

WebSocket Tutorial

http://tutorialspoint.com/websockets/index.htm
https://developer.mbed.org/cookbook/Websockets‐Server
https://www.fullstackpython.com/websockets.html

Useful Online Resources

https://www.arm.com/products/processors/instruction-set-architectures/index.php
https://en.wikipedia.org/wiki/ARM_architecture
https://www.youtube.com/channel/UCNcxd73dSceKtU77XWMOg8A/playlists
http://www.cplusplus.com/reference/
http://en.cppreference.com/w/
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
http://www.cplusplus.com/doc/tutorial/
https://www.tutorialspoint.com/cplusplus/
http://www.cprogramming.com/begin.html
http://tutorialspoint.com/websockets/index.htm
https://developer.mbed.org/cookbook/Websockets-Server
https://www.fullstackpython.com/websockets.html

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™312

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Python Tutorial

https://docs.python.org/3/tutorial/
https://www.tutorialspoint.com/python/

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Java Tutorial

https://docs.oracle.com/javase/tutorial/
http://www.javatpoint.com/java‐tutorial
http://javabeginnerstutorial.com/core‐java/

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

MQTT Tutorial

http://mqtt.org/documentation
http://www.hivemq.com/blog/how‐to‐get‐started‐with‐mqtt
http://www.ev3dev.org/docs/tutorials/sending‐and‐receiving‐messages‐with‐mqtt/
https://learn.adafruit.com/mqtt‐adafruit‐io‐and‐you/overview

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Node‐RED Tutorial

https://nodered.org/docs/getting‐started/first‐flow
http://noderedguide.com/
https://developer.ibm.com/recipes/tutorials/getting‐started‐with‐watson‐iot‐platform‐

using‐node‐red/

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

JSON Tutorial

https://www.w3schools.com/js/js_json_intro.asp
http://www.tutorialspoint.com/json/
https://www.javatpoint.com/json‐tutorial

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

Node.js Tutorial

https://nodejs.org/en/
http://www.tutorialspoint.com/nodejs/
http://www.nodebeginner.org/

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐--‐‐‐

https://docs.python.org/3/tutorial/
https://www.tutorialspoint.com/python/
https://docs.oracle.com/javase/tutorial/
http://www.javatpoint.com/java-tutorial
http://javabeginnerstutorial.com/core-java/
http://mqtt.org/documentation
http://www.hivemq.com/blog/how-to-get-started-with-mqtt
http://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/
https://learn.adafruit.com/mqtt-adafruit-io-and-you/overview
https://nodered.org/docs/getting-started/first-flow
http://noderedguide.com
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://www.w3schools.com/js/js_json_intro.asp
http://www.tutorialspoint.com/json/
https://www.javatpoint.com/json-tutorial
https://nodejs.org/en/
http://www.tutorialspoint.com/nodejs/
http://www.nodebeginner.org

313

Designing Embedded Systems and the Internet of Things (IoT) with the ARM® Mbed™, First Edition. Perry Xiao
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com\go\xiao\designingembeddedsystemandIoTwitharmmbed

a
Accelerometer  16, 17, 18, 19, 88–94, 96,

101, 183, 205, 211, 242
Acorn Computers  8
Actuators  3, 28, 31, 45
Address Bus  5
Anolog to Digital Converter (ADC)  7, 12,

14–20, 31
Application programming interface

(API)  45, 67, 81, 86, 88, 98, 101,
106, 108, 110, 111, 113, 119, 134,
171, 179, 242

Arduino  17, 20, 21, 41, 45, 53, 90, 91, 94,
104, 139, 140, 143, 145, 146, 148,
149, 151, 152, 155, 156, 159, 161,
162, 164, 168, 169, 170, 171,
173–177, 272

Arithmetic logic unit (ALU)  5
ARM  3, 6, 8–18, 21, 24, 25, 40, 41, 45,

47, 49, 50, 51, 53, 54, 58, 62, 69,
115, 124, 129, 135, 137, 149,
150–154, 156–158, 160–162,
163–166, 170, 173, 181, 192, 196,
202, 203, 205–207, 214, 215, 219,
224, 228, 230, 237, 242, 261, 263,
271, 277

Audio jack  13
AWS IoT  42, 43

b
Bit  7, 9, 10, 11, 12, 14–20, 24, 33, 34, 52,

79–82, 103, 273
Bluetooth Low Energy (BLE)  17, 24, 32
Bootloader  67, 69

c
CAN (controller area network)  4, 19, 111
Carriots  45
C/C++  13, 15, 16, 20, 58, 311
Central processing unit (CPU)  4
Cloud  10, 17, 21, 25, 26, 37, 41–44, 242,

263, 277
Collaborations  67, 196, 201, 202
Command line interface (CLI)  49
Communication  53, 71, 90, 103, 106–109,

111, 115, 119, 124, 128, 134, 135
Complex instruction set computing (CISC)  6
Constrained Application Protocol

(CoAP)  33, 38
Control Bus  5, 6
Cortex‐A  8, 9
Cortex‐M  8–12, 14, 15, 17, 18
Cortex‐R  8, 9
Counter  4, 7, 8, 111, 112

d
Data Bus  5, 6
Device‐to‐device (D2D)  23
DigitalIn  12, 14, 71, 72, 77–81, 166, 207, 226
DigitalOut  12, 14, 55, 59, 61, 74–78, 81,

101, 107, 112, 167, 226, 240
Digital Signal Processing (DSP)  10, 18,

137, 139, 142, 147, 160, 162, 163
Digital to Analog Converter (DAC)  7

e
Eclipse IoT  42
EEPROM  7
Embedded Systems  3, 4, 7, 8, 23, 31, 106

Index

Index314

Energy  10, 16, 17, 24, 27, 28, 31, 32, 37, 38
Environment  10, 28, 29, 45, 49, 51, 202
Ethernet  4, 12, 14, 17–21, 49, 111,

115–129, 133, 135, 172, 177, 179,
203, 205, 206, 214, 215–217,
219–222, 224–226, 230, 234, 236,
237, 242, 243, 247, 257, 271, 277

f
Filter

band‐pass filter  143–145, 164
band‐stop filter  146–148, 164
high‐pass filter  137, 141, 142, 152, 154,

156, 164
low‐pass filter  137–140, 142, 145, 148,

152, 156, 158, 159, 164, 275, 276
notch‐filter  146, 164

Firmware  67, 68, 70
Flash  7, 12–20, 58, 60, 61, 75, 99, 165, 261
FRDM‐K64F  17, 20, 21, 41, 49, 51, 53–57,

61, 62, 65, 66–68, 71–76, 78, 81–83,
85, 86, 88–90, 96–98, 100, 101, 103,
106, 107, 109, 115, 119, 131, 132, 163,
205–213, 236–238, 242, 271, 274

g
GE Predix  44
Google Cloud IoT  44
GPIO  12, 15, 17, 57

h
Healthcare  28, 215
Heating, ventilation and air conditioning

(HVAC)  27
HiveMQ MQTT Broker  38, 279, 285–291,

293, 294, 297, 312
Home  8, 11, 25–27, 34, 38, 39, 54–56, 62,

196–198, 246, 248
HTTP  33, 35–38, 42, 25, 119, 120, 122,

123, 128, 133, 134, 178, 217, 219,
220, 234–236

i
IBM Bluemix  17, 39, 41, 242, 245, 246,

248, 252, 253, 257, 260, 263, 277
IBM Ethernet IoT Starter Kit  17, 18, 40,

49, 203, 205–215, 218, 230, 242, 247,
263, 277

IBM Watson  25, 39, 41, 242, 245, 252,
261, 263, 277

I2C (Inter‐Integrated Circuit)  31, 108
serial data acquisition (SDA)  108–110,

211, 212
serial clock line (SCL)  108–110, 211,

212
IEEE  19, 33–35
industrial, scientific, and medical

(ISM)  32, 34
Industry 4.0  28, 29
Inputs  3, 19, 20, 47, 66, 71, 73, 77, 78, 81,

86, 101, 123, 207, 213, 219, 229, 271,
273, 276, 277

Instruction set architecture (ISA)  6
Integrated circuit (IC)  4
Internet of things (IoT)  1, 8, 17, 18, 23–29
Interrupt  4, 7, 8, 100, 101, 111, 168, 169
IoT Platforms

AWS IoT  42, 43
Carriots  45
Eclipse IoT  42
GE Predix  44
Google Cloud IoT  44
IBM Bluemix  17, 39, 41, 242, 245, 246,

248, 252, 253, 257, 260, 263, 277
IBM Watson  25, 39, 41, 242, 245, 252,

261, 263, 277
macchina  45
Microsoft Azure  42, 43
ThingWorx  44
Xively  44

IP  17, 24, 33, 34, 115, 116, 120–126, 128,
129, 131, 133, 134, 178, 179, 217,
218, 227, 229, 234, 236, 243, 296, 297

IP address  17, 24, 115, 116, 120–126, 128,
129, 131, 133, 134, 178, 179, 217,
218, 227, 229, 234, 236, 243, 296, 297

IPv6  33, 34

j
Java  44, 129, 218, 219, 223, 224, 228, 230,

286, 289, 312
JavaScript  16, 39, 41, 42, 44, 45, 301
Joystick  13, 18, 205, 207, 208, 212, 214, 243
JSON (JavaScript Object Notation)  39, 45,

261, 264, 301, 312

Index 315

k
Kit  13, 17, 18, 40, 41, 49, 203, 205–214,

215, 218, 219, 230, 237, 242, 243,
247, 263, 277, 286, 295

l
LCD  7, 13, 18, 106, 205–209, 211, 212,

214–216, 218, 243
LED  7, 13, 17–20, 33, 53–61, 66, 69,

74–76, 79–81, 86, 87, 100, 101, 112,
165, 167, 205, 211, 212, 214, 224,
226, 240–242, 261

Library  20, 44, 88, 90, 96, 97, 116, 117, 118,
124, 126, 128, 131, 137, 139, 149, 160,
163, 172, 173, 181, 182, 184–186,
188–190, 201, 205, 211, 212, 215,
216, 219, 221, 225, 234, 237, 273

LiFi  33, 34, 35, 45
LM75B Temperature Sensor  109, 205,

211, 212, 215, 216
Local File System  98, 99, 100, 101, 272
LoRa  34, 35, 45
6LowPAN  24, 33, 34, 35, 45
LPC11U2  14, 15, 67, 99, 273
LPC1768  11–14, 21, 65, 67, 78–80, 86–88,

96, 98–101, 106–108, 110, 120, 121,
122, 132–134, 160, 162, 205–213,
235, 271–274, 276, 277

m
Macchina  45
Machine‐to‐machine (M2M)  23, 37, 38
Magnetometer  16, 17, 19, 88, 93, 95, 96,

101, 183
Manufacture  28, 231
Memory  3–7, 9, 10, 18, 53, 58, 99, 100
MEMS (micro‐electromechanical

systems)  23
Micro:bit  15–17
Microcontroller (MCU)  3–11, 14, 15, 21,

23, 24, 71, 86, 97, 99, 100, 103, 108,
111, 113

Microprocessor (MPU)  4, 5, 21, 24
Microsoft Azure  42, 43
MQTT  33, 35, 37, 38, 42, 44, 45, 135,

222–224, 243, 279, 285–294,
296–301, 312

n
Near‐Field communication (NFC)  24, 32
Node‐RED  39, 40, 45, 247, 248, 257, 261,

263, 264, 266–269, 295–302, 312
NVRAM  7
Nyquist frequency  137, 138
Nyquist–Shannon sampling theorem  7

o
outputs  3, 7, 17, 20, 47, 66, 71–74, 77, 78,

81, 82, 84, 86, 91, 94, 101, 155, 187,
234, 252, 261, 266, 272, 274, 277,
285, 286, 288, 293, 294

p
Parallel inputs and outputs  7
Peripherals  4–6, 17, 19, 20
PID Controller  160, 163
Platform  10, 11, 13–17, 20, 21, 25, 39,

41–45, 54, 57, 61, 62, 65, 70, 85, 98,
214, 242–245, 252, 253, 263, 312

Potentiometers  13, 18, 205, 208, 209, 213,
214

Processor  3, 5, 8–10, 14, 15, 17, 21, 108,
311

Project  13, 15, 20, 39, 47, 51, 54, 56, 60,
64, 70, 71, 74, 80, 82, 86, 88, 90, 96,
100, 103, 107–110, 181, 183, 192,
202, 203, 215, 216, 224, 225,
230–233, 237, 245, 271, 277

Protocols  31, 35, 42, 45
Pulse Width Modulation (PWM)  12, 13,

17–20, 66, 86–88, 101, 160–162,
166, 209, 210, 212, 213, 231

Python  16, 41, 42, 44, 129, 131, 311, 312

q
Quad  19
Queuing  42, 222

r
Radio‐Frequency Identification (RFID)  23,

24, 32, 35, 237–242, 277
RAM  6, 7, 12, 14–19
Raspberry Pi  39, 45, 279, 295–298
Real‐Time  3, 8, 9, 19, 36, 38, 41, 47, 165,

173, 271, 275
Real‐Time Signal Processing  271, 275

Index316

Reduced instruction set computing
(RISC)  6, 8

Reset  8, 10, 53, 57, 67, 239, 240
RGB LED  13, 18–20, 56, 74, 79, 205, 211,

212, 214
RJ45  14, 20
ROM  6, 7

s
SD card  20, 96–98, 101, 106, 183, 272
Sensors  3, 7, 17, 23, 24, 26–28, 31, 33, 41,

45, 82, 96
Serial  4, 7, 17, 20, 31, 50–53, 66, 71, 77,

80, 90, 91, 93–95, 97, 99, 103–108,
111, 113, 132, 133, 139, 140, 143,
145, 146, 148, 149, 151, 152, 155,
156, 159, 161, 162, 164, 166,
168–171, 173–175, 177, 185, 186,
207, 272, 308

Serial Input and Output  7
Serial Peripheral Interface (SPI)  12, 14, 15,

17, 19, 20, 31, 66, 97, 106–108, 110,
113, 239, 240

Servo motor  13, 88, 230, 231, 234–236
Speaker  7, 13, 18, 205, 209, 210, 214
System‐on‐a‐chip (SoC)  4

t
TCP/IP  33
TCP (transmission control protocol)  33,

35, 36, 38, 120, 121, 122, 124–126,
134, 135, 177, 178, 216–219, 225,
226, 235

Temperature Sensor  3, 13, 18, 31, 82, 83,
128, 205, 211, 212, 214, 215, 242

ThingWorx  44
Transport  28, 37, 222

u
UART (universal asynchronous receiver/

transmitter)  7, 12, 15, 19, 20, 31
UDP (user datagram protocol)  33, 38, 124,

126, 127, 135, 227
Unidirectional  6
Update  28, 192, 194, 195, 200, 201, 202,

219, 275, 296, 299
USB  4, 10, 12–15, 17, 19, 20, 50, 53, 57,

67, 93, 95, 99, 103–105, 111, 132,
133, 161, 162, 166, 215, 224, 230,
237, 242, 271, 308

v
Version Control  192, 196, 202
Visible Light Communications (VLC)  33

w
Watchdog  8
Web  10, 17, 35, 36, 39, 44, 45, 49, 50, 53, 54,

57, 62, 63, 67, 68, 119, 120, 122, 123,
128, 135, 173, 177, 179, 215, 271–220,
230–232, 234–236, 263, 296

WebSocket  33, 35–40, 42, 44, 45, 128–131,
134, 135, 285, 290–292, 294, 311

WiFi  4, 14, 18, 24, 31, 33, 34, 35, 131–135

x
Xbee  14, 18
Xively  44
XML (Extensible Markup Language)  38, 45
XMPP (Extensible Messaging and Presence

Protocol)  38

z
ZigBee  14, 18, 24, 34, 35
Z‐Wave  24, 34, 35

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover Page
	Half Title Page
	Title Page
	Copyright Page
	Dedication Page
	Contents
	About the Author
	Preface
	Authors Acknowledgments
	About the companion website
	Part I Introduction to Arm® Mbed™ and IoT
	Chapter 1 Introduction to Arm® Mbed™
	1.1 What is an Embedded System?
	1.2 Microcontrollers and Microprocessors
	1.3 ARM® Processor Architecture
	1.4 The Arm® Mbed™ Systems
	1.4.1 NXP LPC1768
	1.4.2 NXP LPC11U24
	1.4.3 BBC Micro:bit
	1.4.4 The Arm® Mbed™ Ethernet Internet of Things (IoT) Starter Kit

	1.5 Summary
	1.6 Chapter Review Questions

	Chapter 2 Introduction to the Internet of Things (IoT)
	2.1 What is the Internet of Things (IoT)?
	2.2 How Does IoT Work?
	2.3 How Will IoT Change Our Lives?
	2.4 Potential IoT Applications
	2.4.1 Home
	2.4.2 Healthcare
	2.4.3 Transport
	2.4.4 Energy
	2.4.5 Manufacture
	2.4.6 Environment

	2.5 Summary
	2.6 Chapter Review Questions

	Chapter 3 IoT Enabling Technologies
	3.1 Sensors and Actuators
	3.2 Communications
	3.2.1 RFID and NFC (Near‐Field Communication)
	3.2.2 Bluetooth Low Energy (BLE)
	3.2.3 LiFi
	3.2.4 6LowPAN
	3.2.5 ZigBee
	3.2.6 Z‐Wave
	3.2.7 LoRa

	3.3 Protocols
	3.3.1 HTTP
	3.3.2 WebSocket
	3.3.3 MQTT
	3.3.4 CoAP
	3.3.5 XMPP

	3.4 Node‐RED
	3.5 Platforms
	3.5.1 IBM Watson IoT—Bluemix (http://www.ibm.com/internet‐of‐things/)
	3.5.2 Eclipse IoT (https://iot.eclipse.org/)
	3.5.3 AWS IoT (https://aws.amazon.com/iot/)
	3.5.4 Microsoft Azure IoT Suite (https://azure.microsoft.com/en‐us/suites/iot‐suite/)
	3.5.5 Google Cloud IoT (https://cloud.google.com/solutions/iot/)
	3.5.6 ThingWorx (https://www.thingworx.com/)
	3.5.7 GE Predix (https://www.predix.com/)
	3.5.8 Xively (https://www.xively.com/)
	3.5.9 macchina.io (https://macchina.io/)
	3.5.10 Carriots (https://www.carriots.com/)

	3.6 Summary
	3.7 Chapter Review Questions

	Part II Arm® Mbed™ Development
	Chapter 4 Getting Started with Arm® Mbed™
	4.1 Introduction
	4.2 Hardware and Software Required
	4.2.1 Hardware
	4.2.2 Software

	4.3 Your First Program: Blinky LED
	4.3.1 Connect the Mbed to a PC
	4.3.2 Click “mbed.htm” to Log In
	4.3.3 Add the FRDM‐K64F Platform to Your Compiler
	4.3.4 Import an Existing Program
	4.3.5 Compile, Download, and Run Your Program
	4.3.6 What Next?

	4.4 Create Your Own Program
	4.5 C/C++ Programming Language
	4.6 Functions and Modular Programming
	4.7 Manage Platforms
	4.8 Clone Your Program
	4.9 Search and Replace
	4.10 Compile Your Program for Multiple Platforms
	4.11 Delete Your Program
	4.12 Disaster Recovery Procedure
	4.13 Upgrade Firmware
	4.14 Help
	4.15 Summary

	Chapter 5 Inputs and Outputs
	5.1 Digital Inputs and Outputs
	5.1.1 Digital Inputs
	5.1.2 Digital Outputs
	5.1.3 BusIn, BusOut, and BusInOut

	5.2 Analog Inputs and Outputs
	5.2.1 Analog Inputs
	5.2.2 Analog Outputs

	5.3 Pulse Width Modulation (PWM)
	5.4 Accelerometer and Magnetometer
	5.5 SD Card
	5.6 Local File System (LPC1768)
	5.7 Interrupts
	5.8 Summary

	Chapter 6 Digital Interfaces
	6.1 Serial
	6.2 SPI
	6.3 I2C
	6.4 CAN
	6.5 Summary

	Chapter 7 Networking and Communications
	7.1 Ethernet
	7.2 Ethernet Web Client and Web Server
	7.3 TCP Socket and UDP Socket
	7.4 WebSocket
	7.5 WiFi
	7.6 Summary

	Chapter 8 Digital Signal Processing and Control
	8.1 Low‐Pass Filter
	8.2 High‐Pass Filter
	8.3 Band‐Pass Filter
	8.4 Band‐Stop Filter and Notch Filter
	8.5 Fast Fourier Transform (FFT)
	8.6 PID Controller
	8.7 Summary

	Chapter 9 Debugging, Timer, Multithreading, and Real‐Time Programming
	9.1 Debugging
	9.2 Timer, Timeout, Ticker, and Time
	9.3 Network Time Protocol (NTP)
	9.4 Multithreading and Real‐Time Programming
	9.5 Summary

	Chapter 10 Libraries and Programs
	10.1 Import Libraries and Programs
	10.2 Export Your Program
	10.3 Write Your Own Library
	10.4 Publish Your Library
	10.5 Publish Your Program
	10.6 Version Control
	10.7 Collaborations
	10.8 Update Your Library and Program
	10.9 Summary

	Part III The IoT Starter Kit and IoT Projects
	Chapter 11 Arm® Mbed™ Ethernet IoT Starter Kit
	11.1 128×32 LCD
	11.2 Joystick
	11.3 Two Potentiometers
	11.4 Speaker
	11.5 Three‐Axis Accelerometer
	11.6 LM75B Temperature Sensor
	11.7 RGB LED
	11.8 Summary

	Chapter 12 IoT Projects with Arm® Mbed™
	12.1 Temperature Monitoring over the Internet
	12.2 Smart Lighting
	12.3 Voice‐Controlled Door Access
	12.4 RFID Reader
	12.5 Cloud Example with IBM Watson Bluemix
	12.5.1 IBM Quickstart Service
	12.5.2 IBM Registered Service (Bluemix)
	12.5.3 Add IBM Watson IoT Service to Your Application
	12.5.4 Add Your Mbed Device to Your Watson IoT Organization
	12.5.5 Adding Credentials onto Your Mbed Device
	12.5.6 Link Your IBM IoT Watson Application to Your Mbed Device
	12.5.7 Sending Commands from Your IBM IoT Watson Application to Your Mbed Board
	12.5.8 More with Node-RED

	12.6 Real-Time Signal Processing
	12.7 Summary

	Part IV Appendices
	Appendix A Example Codes
	Appendix B HiveMQ MQTT Broker
	Appendix C Node‐RED on Raspberry Pi
	Appendix D String and Array Operations
	Appendix E Useful Online Resources

	Index
	EULA

