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Introduction
A paper by Aryeh Eiderman [1] submits an efficient algorithm for real time stepper motor ramping 

where all expensive computations are precomputed, leaving only multiplication and addition in the 

real time loop. However, Eiderman’s paper is explicitly designed for floating point arithmetic, and 

does not work for integer arithmetic. Eiderman notes that was originally designed for an IBM PC, 

which may have had a floating point coprocessor. However, today most stepper motors are 

controlled by microcontrollers and not full x86 machines. Many microcontrollers do not have a 

floating point unit and so here we investigate a modification to allow Eiderman’s algorithm to work 

with integer arithmetic.

This modification was developed for iter-step-gen, a Rust-based asynchronous stepper motor step 

planner and driver written out of spite to control the author’s window blinds with an esp32c3.

Original formula
With the following inputs,

𝑑 = move distance

𝑣0 = Inital speed (steps
sec

)

𝑣 = Max speed (steps
sec

)

𝐹 = tick frequency (Hz)

𝑎 = target acceleration (steps
sec2 )

(1)

Eidermans update formula is as follows:

𝑝 = 𝑝(1 + 𝑚𝑝2) (2)

Where:

𝑝 = the delay between steps

𝑚 =

{

− 𝑎

𝐹2 if accelerating
0 if cruising
𝑎

𝐹2 if decelerating

(3)

Avoiding small numbers
LeibRamp works fine for floating point values, and indeed, the paper calls out that this algorithm is 

designed for them. However, for integer math, natively transcribing the above algorithm into code 

results in several issues:

• 𝑚 is almost always 0, as 𝐹 2 is very large (for some microcontrollers, it is in-fact dangerously close 

to 264)

• (1 + 𝑚𝑝2) is intended to always be between 0 and 2, usually around 1. In integer math, this means 

it is always 0 or 1, resulting in no motion or no acceleration.



However, we can do a few transformations to avoid small numbers in intermediate calculations, 

making the fractional part much less significant.

Firstly, instead of storing the (most likely precomputed) 𝑚 = 𝑎
𝐹2 , we can store its inverse, 𝑚−1 =

𝐹2

𝑎 . This will be a very large number rather than a very small number, avoiding truncation to zero. 

Due to this transformation, we now divide by 𝑚−1 in Eq. 2. The update formula becomes:

𝑝 = 𝑝(1 + 𝑝2

𝑚−1 ) (4)

Secondly, we can change the grouping of the final calculation. Where (1 + 𝑚𝑝2) is ≅ 1, both 𝑚 and 

𝑝2 are relatively large. We can use this to distribute 𝑝 in Eq. 4, causing the intermediate calculations 

to avoid small numbers, like so:

𝑝 = 𝑝 + 𝑝3

𝑚−1 (5)

Finally, if we are also using unsigned integers, during acceleration we can, instead of negating 𝑚−1 

in Eq. 5, we can subtract 𝑝 from 𝑝3

𝑚−1 , making the update function:

𝑝 = 𝑝 ± 𝑝3

𝑚−1 (6)

Remainder carrying
Unfortunately, the flooring after every division inherent in integer arithmetic reduces precision 

significantly, and causes the acceleration curve to be asymmetrical with respect to the deceleration 

curve. This can be fixed, however, by storing the remainder of each division and adding that 

remainder to the next iteration. Eq. 6 the following pair of equations:

𝑝 = 𝑝 ± 𝑝3 + 𝑟
𝑚−1

𝑟 = (𝑝3 + 𝑟) mod 𝑚−1
(7)

Modifying the optional enhancement
Eiderman posits an optional precision enhancement using a couple extra computations to increase 

the accuracy of the algorithm:

𝑝 = 𝑝(1 + 𝑞 + 𝑞2) (8)

where 𝑞 = 𝑚𝑝2.

We can apply similar transformations to this. As we have already calculated 𝑚−1, we can redefine 𝑞 

as:

𝑞 = 𝑝2

𝑚−1 (9)

and distribute 𝑝 in Eq. 8:

𝑝 = 𝑝 ± 𝑝𝑞 + 𝑝𝑞2 (10)

Unfortunately, 𝑞 is also very close to 0, so we instead calculate the inverse, 𝑞−1 = 𝑚−1

𝑝2 .

and divide rather than multiply in Eq. 10:



𝑝 = 𝑝 ± 𝑝
𝑞

+ 𝑝
𝑞2 (11)

Adding remainder storage is straightforward with this enhancement, though it requires 3 separate 

remainder variables to be stored:

𝑞−1 = 𝑚−1 + 𝑟1
𝑝2

𝑝 = 𝑝 ± 𝑝 + 𝑟2
𝑞

+ 𝑝 + 𝑟3
𝑞2

𝑟1 = (𝑚−1 + 𝑟1) mod 𝑝2

𝑟2 = (𝑝 + 𝑟2) mod 𝑞

𝑟3 = (𝑝 + 𝑟3) mod 𝑞2

(12)

Unlike Eidermans method, where this enhancement requires only one extra addition and one extra 

multiplication, in the integer form it requires 2 extra divisions and an addition. Due to the extra 2 

divisions, and the extra space needed for the 2 extra remainders, this was deemed not worth the 

extra precision in the authors usecase.

Implementation considerations
For convenience of the reader, the following are the remaining variables needed to implement a 

linear ramping step planner.

𝑝1 = 𝐹
√𝑣2

0 + 2𝑎
delay period for inital step

𝑝𝑐 = 𝐹
𝑣

delay period for cruise period steps

𝑆 = 𝑣2 − 𝑣2
0

2𝑎
distance needed for acceleration to 𝑣

𝑆𝑎 = {
𝑆 if 𝑑 > 2𝑆
⌈𝑑

2 if 𝑑 ≤ 2𝑆 actual distance needed for acceleration/decceleration

(13)

A move can be split into 3 parts, the acceleration phase, the cruise phase, and the deceleration phase. 

During the acceleration phase, which lasts until 𝑝 ≤ 𝑝𝑐, the ± is a subtraction. During the cruise 

phase, which lasts until the remaining steps in the move ≤ 𝑆𝑎, 𝑝 should be held constant at 𝑝𝑐. 

During the deceleration phase, which lasts until the target position is reached, the ± is an addition.

Finally, the ideal formula, useful in unit tests and verification, is:

𝑝 = 𝐹

√(𝐹
𝑝 )

2
+ 2𝑎

(14)
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